[1] 祃栋猛,陆信曜,陈文强,等.发酵后期补加2种氮源对克雷伯氏菌合成1,3-丙二醇的影响[J].食品与发酵工业, 2016, 42(8): 8-12.
[2] VIVEK N, CHRISTOPHER M, KUMAR M K, et al.Pentose rich acid pretreated liquor as co-substrate for 1,3-propanediol production[J]. Renewable Energy, 2018, 129:794-799.
[3] TANG T, QI F, LIU H J, et al.Recent developments in the microbial production of 1,3-propanediol[J]. Biofuels, 2013, 4(6): 651-667.
[4] RHIE M N, KIM H T, JO S Y, et al.Recent advances in the metabolic engineering of Klebsiella pneumoniae: a potential platform microorganism for biorefineries[J]. Biotechnology and Bioprocess Engineering, 2019, 31(6): 945-961.
[5] KUMAR V, SANKARANARAYANAN M, DURGAPAL M, et al.Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of the lactate dehydrogenase-deficient recombinant Klebsiella pneumoniae overexpressing an aldehyde dehydrogenase[J]. Bioresource Technology, 2013, 135: 555-563.
[6] XU Y Z, GUO N N, ZHENG Z M, et al.Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae[J]. Biotechnology & Bioengineering, 2009, 104(5): 965-972.
[7] CELINSKA E.Klebsiella spp as a 1, 3-propanediol producer: the metabolic engineering approach[J]. Critical Reviews in Biotechnology, 2012, 32(3):274-288.
[8] ZHOU S, LI L L, PERSEKE M, et al.Isolation and characterization of a Klebsiella pneumoniae strain from mangrove sediment for efficient biosynthesis of 1,3-propanediol[J]. Science Bulletin, 2015, 60(5): 511-521.
[9] KO Y, SEOL E, SUNDARA S B, et al.Metabolic engineering of Klebsiella pneumoniae J2B for co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol: Reduction of acetate and other by-products[J]. Bioresource Technology, 2017, 244(1):1 096-1 103.
[10] PEEBO K, VALGEPEA K, NAHKU R, et al.Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2014, 98(11): 5 131-5 143.
[11] 梁川,王洁茹,诸葛斌,等.基于回补途径的TCA循环改造对克雷伯氏菌生长和甘油代谢的影响[J].应用与环境生物学报, 2019, 25(4):972-976.
[12] ANAND P,SAXEAN R K,MARWAH R G.A novel downstream process for 1,3-propanediol from glycerol-based fermentation[J].Applied Microbiology and Biotechnology,2011,90(4):1 267-1 276.
[13] LIU M, DING Y M, CHEN H L, et al.Improving the production of acetyl-CoA-derived chemicals in Escherichia coli BL21(DE3) through iclR and arcA deletion[J]. BMC Microbiology, 2017, 17(1):10.
[14] DING Z X, FANG Y, ZHU L F, et al.Deletion of arcA, iclR, and tdcC in Escherichia coli to improve L-threonine production[J]. Biotechnology and Applied Biochemistry, 2019, 66(5): 794-807.
[15] LU X Y, REN S L, LU J Z, et al.Enhanced 1,3-propanediol production in Klebsiella pneumoniae by a combined strategy of strengthening the TCA cycle and weakening the glucose effect[J]. Journal of Applied Microbiology, 2018, 124(3): 682-690.
[16] KUMAR V, PARK S.Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source[J]. Biotechnology Advances, 2018, 36(1): 150-167.
[17] JIANG Y, CHEN B, DUAN C L, et al.Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system[J]. Applied and Environmental Microbiology, 2015, 81(7): 2 506-2 514.
[18] 刘情,王小婉,诸葛斌,等.基因敲除弱化产 1,3-丙二醇 Klebsiella pneumoniae 荚膜多糖的合成[J].化工进展, 2017, 36(9): 3 447-3 452.
[19] MOLINA-HENARES A J, KRELL T, GUAZZARONI M E, et al. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors[J]. FEMS Microbiology Reviews, 2006, 30(2):157-186.
[20] YAMAMOTO K, ISHIHAMA A.Two different modes of transcription repression of the Escherichia coli acetate operon by IcIR[J]. Molecular Microbiology, 2003, 47(1):183-194.
[21] WAEGEMAN H, BEAUPREZ J, MOENS H, et al.Effect of iclR and arcA deletions on physiology and metabolic fluxes in Escherichia coli BL21(DE3)[J]. Biotechnology Letters, 2012, 34(2): 329-337.
[22] YANG T H, RATHANSINGH C, LEE H J, et al.Identification of acetoin reductases involved in 2,3-butanediol pathway in Klebsiella oxytoca[J]. Journal of Biotechnology, 2014, 172(1): 59-66.
[23] LIN J, ZHANG Y Q, XU D F, et al.Deletion of poxB, pta, and ackA improves 1,3-propanediol production by Klebsiella pneumoniae[J]. Applied Microbiology and Biotechnology, 2016, 100(6):2 775-2 784.
[24] LEE J H, JUNG H M, JUNG M Y, et al.Effects of gltA and arcA mutations on biomass and 1,3-propanediol production in Klebsiella pneumoniae[J]. Biotechnology and Bioprocess Engineering, 2019, 24(1): 95-102.
[25] BAO W, WEI R, LIU X, et al.Regulation of pyruvate formate lyase-deficient Klebsiella pneumoniae for efficient 1,3-propanediol bioproduction[J]. Current Microbiology, 2020, 77(1): 55-61.
[26] ZHOU J D, WANG D X, WANG C H, et al.The role of the pyruvate acetyl-CoA switch in the production of 1,3-propanediol by Klebsiella pneumoniae[J]. Applied Biochemistry and Biotechnology, 2017, 181(3): 1 199-1 210.