Strengthening glyoxylate bypass and the TCA cycle improved 1,3-propanediol production in Klebsiella pneumoniae

  • XIE Mengmeng ,
  • HU Huitao ,
  • LU Xinyao ,
  • ZONG Hong ,
  • ZHUGE Bin
Expand
  • 1(Key Laboratory of Carbohydrate Chemistry and Biotechnology,Ministry of Education,Jiangnan University,Wuxi 214122,China);
    2(The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, School of Biotechnology,Wuxi 214122, China);
    3(Research Centre of Industrial Microbiology, Jiangnan University, Wuxi 214122, China)

Received date: 2020-02-05

  Revised date: 2020-02-29

  Online published: 2020-11-02

Abstract

Acetate overflow and low tricarboxylic acid cycle (TCA cycle) activity inhibit the bioproduction of 1,3-propanediol from glycerol by Klebsiella pneumoniae. To relieve the overflow in acetyl-CoA node, iclR encoding isocitrate lyase regulator was deleted, sdhC encoding succinate dehydrogenase and mdh encoding malate dehydrogenase were overexpressed. Deletion of iclR decreased the accumulation of acetate by 41% and increased the 1,3-propanediol titer by 8%. Further overexpression of sdhC or mdh decreased the accumulation of 2,3-butanediol by 47% or 52% and improved the yield of 1,3-propanediol by 7% or 8%. Co-expression of sdhC and mdh improved the glycerol consumption and increased the 1,3-propanediol titer by 11%. The biomass of K. pneumoniae Lric-sdhC-mdh was significantly improved and the 1,3-propanediol titer reached 77.2 g/L with a molar yield of 0.69 mol/moL in fed-batch fermentation. These results indicated that activating glyoxylate bypass by disruption of iclR and reinforcement of the TCA cycle by overexpression of sdhC and mdh decrease acetate accumulation and increase glycerol consumption, which are favorable for the synthesis of 1,3-propanediol.

Cite this article

XIE Mengmeng , HU Huitao , LU Xinyao , ZONG Hong , ZHUGE Bin . Strengthening glyoxylate bypass and the TCA cycle improved 1,3-propanediol production in Klebsiella pneumoniae[J]. Food and Fermentation Industries, 2020 , 46(19) : 17 -22 . DOI: 10.13995/j.cnki.11-1802/ts.023524

References

[1] 祃栋猛,陆信曜,陈文强,等.发酵后期补加2种氮源对克雷伯氏菌合成1,3-丙二醇的影响[J].食品与发酵工业, 2016, 42(8): 8-12.
[2] VIVEK N, CHRISTOPHER M, KUMAR M K, et al.Pentose rich acid pretreated liquor as co-substrate for 1,3-propanediol production[J]. Renewable Energy, 2018, 129:794-799.
[3] TANG T, QI F, LIU H J, et al.Recent developments in the microbial production of 1,3-propanediol[J]. Biofuels, 2013, 4(6): 651-667.
[4] RHIE M N, KIM H T, JO S Y, et al.Recent advances in the metabolic engineering of Klebsiella pneumoniae: a potential platform microorganism for biorefineries[J]. Biotechnology and Bioprocess Engineering, 2019, 31(6): 945-961.
[5] KUMAR V, SANKARANARAYANAN M, DURGAPAL M, et al.Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of the lactate dehydrogenase-deficient recombinant Klebsiella pneumoniae overexpressing an aldehyde dehydrogenase[J]. Bioresource Technology, 2013, 135: 555-563.
[6] XU Y Z, GUO N N, ZHENG Z M, et al.Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae[J]. Biotechnology & Bioengineering, 2009, 104(5): 965-972.
[7] CELINSKA E.Klebsiella spp as a 1, 3-propanediol producer: the metabolic engineering approach[J]. Critical Reviews in Biotechnology, 2012, 32(3):274-288.
[8] ZHOU S, LI L L, PERSEKE M, et al.Isolation and characterization of a Klebsiella pneumoniae strain from mangrove sediment for efficient biosynthesis of 1,3-propanediol[J]. Science Bulletin, 2015, 60(5): 511-521.
[9] KO Y, SEOL E, SUNDARA S B, et al.Metabolic engineering of Klebsiella pneumoniae J2B for co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol: Reduction of acetate and other by-products[J]. Bioresource Technology, 2017, 244(1):1 096-1 103.
[10] PEEBO K, VALGEPEA K, NAHKU R, et al.Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2014, 98(11): 5 131-5 143.
[11] 梁川,王洁茹,诸葛斌,等.基于回补途径的TCA循环改造对克雷伯氏菌生长和甘油代谢的影响[J].应用与环境生物学报, 2019, 25(4):972-976.
[12] ANAND P,SAXEAN R K,MARWAH R G.A novel downstream process for 1,3-propanediol from glycerol-based fermentation[J].Applied Microbiology and Biotechnology,2011,90(4):1 267-1 276.
[13] LIU M, DING Y M, CHEN H L, et al.Improving the production of acetyl-CoA-derived chemicals in Escherichia coli BL21(DE3) through iclR and arcA deletion[J]. BMC Microbiology, 2017, 17(1):10.
[14] DING Z X, FANG Y, ZHU L F, et al.Deletion of arcA, iclR, and tdcC in Escherichia coli to improve L-threonine production[J]. Biotechnology and Applied Biochemistry, 2019, 66(5): 794-807.
[15] LU X Y, REN S L, LU J Z, et al.Enhanced 1,3-propanediol production in Klebsiella pneumoniae by a combined strategy of strengthening the TCA cycle and weakening the glucose effect[J]. Journal of Applied Microbiology, 2018, 124(3): 682-690.
[16] KUMAR V, PARK S.Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source[J]. Biotechnology Advances, 2018, 36(1): 150-167.
[17] JIANG Y, CHEN B, DUAN C L, et al.Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system[J]. Applied and Environmental Microbiology, 2015, 81(7): 2 506-2 514.
[18] 刘情,王小婉,诸葛斌,等.基因敲除弱化产 1,3-丙二醇 Klebsiella pneumoniae 荚膜多糖的合成[J].化工进展, 2017, 36(9): 3 447-3 452.
[19] MOLINA-HENARES A J, KRELL T, GUAZZARONI M E, et al. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors[J]. FEMS Microbiology Reviews, 2006, 30(2):157-186.
[20] YAMAMOTO K, ISHIHAMA A.Two different modes of transcription repression of the Escherichia coli acetate operon by IcIR[J]. Molecular Microbiology, 2003, 47(1):183-194.
[21] WAEGEMAN H, BEAUPREZ J, MOENS H, et al.Effect of iclR and arcA deletions on physiology and metabolic fluxes in Escherichia coli BL21(DE3)[J]. Biotechnology Letters, 2012, 34(2): 329-337.
[22] YANG T H, RATHANSINGH C, LEE H J, et al.Identification of acetoin reductases involved in 2,3-butanediol pathway in Klebsiella oxytoca[J]. Journal of Biotechnology, 2014, 172(1): 59-66.
[23] LIN J, ZHANG Y Q, XU D F, et al.Deletion of poxB, pta, and ackA improves 1,3-propanediol production by Klebsiella pneumoniae[J]. Applied Microbiology and Biotechnology, 2016, 100(6):2 775-2 784.
[24] LEE J H, JUNG H M, JUNG M Y, et al.Effects of gltA and arcA mutations on biomass and 1,3-propanediol production in Klebsiella pneumoniae[J]. Biotechnology and Bioprocess Engineering, 2019, 24(1): 95-102.
[25] BAO W, WEI R, LIU X, et al.Regulation of pyruvate formate lyase-deficient Klebsiella pneumoniae for efficient 1,3-propanediol bioproduction[J]. Current Microbiology, 2020, 77(1): 55-61.
[26] ZHOU J D, WANG D X, WANG C H, et al.The role of the pyruvate acetyl-CoA switch in the production of 1,3-propanediol by Klebsiella pneumoniae[J]. Applied Biochemistry and Biotechnology, 2017, 181(3): 1 199-1 210.
Outlines

/