Evaluation of Wushan plum edible quality based on principal component analysis

  • HAO Qilin ,
  • HUANG Xianzhi ,
  • HE Yan ,
  • WEI Zhen ,
  • DING Xiaowen
Expand
  • 1(College of Food Science, Southwest University, Chongqing 400716, China);
    2(Department of Science and Technology, Southwest University, Chongqing 400716, China)

Received date: 2020-04-09

  Revised date: 2020-05-12

  Online published: 2020-11-02

Abstract

The purpose of this study was to evaluate the color, flavor and other edible quality, and to explore the influence of different altitudes on edible quality of Wushan plums in five main planting region of Chongqing, including G(at an altitude of 300-400 m), Q(at an altitude of 350-400 m), P(at an altitude of 550-700 m), S(at an altitude of 800-900 m), L(at an altitude of 850-1 000 m). Fifty-five Wushan plums samples were extracted to determine the contents of 18 physical and chemical evaluation indexes, such as total acids and soluble solids, which were evaluated and compared by principal component analysis (PCA). The results showed that six core indexes, including solid-acid ratio, sucrose, glucose, tartaric acid, b* value and succinic acid, were extracted using principal component analysis with a cumulative contribution rate of 75.478% to evaluate the edible quality of Wushan plums. The edible quality of plums in five growing areas of Wushan were different and the best was from Wushan G region, followed by Q region. Besides, altitude was one of the important factors affecting the edible quality of Wushan plums. The edible quality of Wushan plums at low altitude (300-400 m) was better than that of medium altitude (550-700 m) and high altitude (800-1 000 m).

Cite this article

HAO Qilin , HUANG Xianzhi , HE Yan , WEI Zhen , DING Xiaowen . Evaluation of Wushan plum edible quality based on principal component analysis[J]. Food and Fermentation Industries, 2020 , 46(19) : 251 -257 . DOI: 10.13995/j.cnki.11-1802/ts.024178

References

[1] 寇琳羚, 曾卓华, 熊伟, 等. 重庆市李产业发展现状与对策探讨[J]. 中国果业信息, 2019, 36(11): 8-13;34.
[2] 刘幸运, 张天宇, 武哲宇, 等. 重庆巫山旅游气候资源评估[J]. 西南师范大学学报(自然科学版), 2018, 43(5): 86-94.
[3] GRAEF J L, RENDINA R E, CROCKETT E K, et al.Select polyphenolic fractions from dried plum enhance osteoblast activity through BMP-2 signaling[J]. Journal of Nutritional Biochemistry, 2018, 55: 59-67.
[4] 肖星凝, 李苇舟, 石芳, 等. 不同品种李子多酚组成及抗氧化活性[J]. 食品科学, 2017, 38(15): 31-37.
[5] 雷丽, 何靖柳, 刘晓燕, 等. 因子分析法综合评价1-甲基环丙烯处理对青脆李低温贮藏品质的影响[J]. 食品与发酵工业, 2018, 44(1): 192-198.
[6] 吴雪莹, 邓丽莉, 王宝刚, 等. 1-MCP处理对李果实采后生理的影响[J]. 食品科学, 2015, 36(20): 270-276.
[7] 周勇, 陈琼, 邓皓文, 等.四川乐山几个李子品种的品质特征研究[J]. 乐山师范学院学报, 2017,32(12): 17-21;130.
[8] 邱利娜, 刘学琦, 廖明安, 等. 22个脆李资源果实性状比较研究[J]. 中国果树, 2015(5): 28-31.
[9] 郝麒麟, 陈媛, 黄先智, 等. 巫山脆李营养品质评价[J]. 食品与发酵工业,2020,46(14):249-255.
[10] LI J, LUO W, WANG Z, et al.Early detection of decay on apples using hyperspectral reflectance imaging combining both principal component analysis and improved watershed segmentation method[J]. Postharvest Biology and Technology, 2019, 149:235-246.
[11] 克劳斯·巴克豪斯,本德·埃里克森,伍尔夫·普林克,等. 多元统计方法——用SPSS工具[M]. 上海:格致出版社, 2017.
[12] 谢国芳, 王艳, 罗桥兰, 等. 因子综合法评价贵州不同产地蓝莓果实品质[J]. 食品与发酵工业, 2018, 44(4): 248-253.
[13] 辜夕容, 陈勇, 邓雪梅, 等. 武隆猪腰枣果实品质变异分析与优良种质筛选[J]. 食品与发酵工业, 2015, 41(3): 124-128.
[14] 张春岭, 刘慧, 刘杰超, 等. 基于主成分分析与聚类分析的中、早熟桃品种制汁品质评价[J]. 食品科学, 2019, 40(17): 141-149.
[15] 贾朝爽, 单长松, 周涛, 等. 主要樱桃品种果实营养性状分析[J]. 食品科学, 2019, 40(4): 244-250.
[16] 郑丽静, 聂继云, 李明强, 等. 苹果风味评价指标的筛选研究[J]. 中国农业科学, 2015, 48(14): 2 796-2 805.
[17] 刘硕, 刘有春, 刘宁, 等.李属(Prunus)果树品种资源果实糖和酸的组分及其构成差异[J]. 中国农业科学, 2016, 49(16): 3 188-3 198.
[18] 姚改芳. 不同栽培种梨果实糖酸含量特征及形成规律研究[D]. 南京:南京农业大学, 2011.
[19] 朱文娴, 夏必帮, 廖红梅, 等. 四种红肉火龙果品种制汁适宜性评价研究[J]. 食品与发酵工业,2020,46(3):167-173.
[20] GB 5009.3—2016 食品安全国家标准食品中水分的测定[S]. 北京: 中国标准出版社, 2016.
[21] GB/T 12456—2008 食品中总酸的测定[S]B/T 12456—2008 食品中总酸的测定[S]. 北京: 中国标准出版社, 2008.
[22] NY/T 2742—2015 水果及制品可溶性糖的测定[S]Y/T 2742—2015 水果及制品可溶性糖的测定[S]. 北京: 中国标准出版社, 2015.
[23] 赵爱玲, 薛晓芳, 王永康, 等. 质构仪检测鲜枣果实质地品质的方法研究[J]. 果树学报, 2018, 35(5): 631-641.
[24] 郝桂堂, 陈尚卫, 朱松, 等. 对氨基苯甲酸衍生化高效液相色谱法分析多糖中的单糖及糖醛酸组成[J]. 色谱, 2007(1): 75-79.
[25] 马倩, 肖依文, 汪涯, 等. HPLC同步测定南丰蜜桔成熟过程中9种有机酸[J]. 食品工业, 2019, 40(3): 306-310.
[26] 聂继云, 李志霞, 李海飞, 等. 苹果理化品质评价指标研究[J]. 中国农业科学, 2012, 45(14): 2 895-2 903.
[27] 王海波, 陈学森, 辛培刚, 等. 几个早熟苹果品种果实糖酸组分及风味品质的评价[J]. 果树学报, 2007, 24(4): 513-516.
[28] 陆敏, 李路华, 冯俊霞, 等. 高效液相色谱法同时测定常见水果中的四种有机酸[J]. 食品工业科技, 2009, 30(7): 312-313;316.
[29] 王晨, 房经贵, 王涛, 等. 果树果实中的糖代谢[J]. 浙江农业学报, 2009, 21(5): 529-534.
[30] 李树玲, 黄礼森, 丛佩华, 等. 不同种内梨品种果实糖、酸含量分析比较[J]. 中国果树, 1995(3): 9-12.
[31] 贾定贤, 米文广, 杨儒琳, 等. 苹果品种果实糖、酸含量的分级标准与风味的关系[J]. 园艺学报, 1991, 18(1): 9-14.
[32] 姚改芳, 张绍铃, 曹玉芬, 等. 不同栽培种梨果实中可溶性糖组分及含量特征[J]. 中国农业科学, 2010, 43(20): 4 229-4 237.
[33] 赵尊行, 孙衍华, 黄化成. 山东苹果中可溶性糖、有机酸的研究[J]. 山东农业大学学报, 1995, 26(3): 355-360.
[34] KAVDIR I, GUYER D E.Evaluation of different pattern recognition techniques for apple sorting[J]. Biosystems Engineering, 2007, 99(2): 211-219.
[35] 郝麒麟, 陈梅, 贺燕, 等. 基于因子综合法评价重庆X区绿茶品质[J]. 食品与发酵工业,2020,46(10):278-283.
[36] 赵瑞蕊, 何结望, 王海明, 等. 基于主成分和聚类分析的湖北烤烟物理质量指标综合评价[J]. 中国烟草科学, 2012, 33(4): 90-94.
[37] READ Q D, MOORHEAD L C, SWENSON N G, et al.Convergent effects of elevation on functional leaf traits within and among species[J]. Functional Ecology, 2014, 28: 37-45.
[38] SOETHE N, LEHMANN J, ENGELS C.Nutrient availability at different altitudes in a tropical montane forest in Ecuador[J]. Journal of Tropical Ecology, 2008, 24(4): 397-406.
Outlines

/