Research progress on detection methods of amanita cyclopeptide toxins

  • ZHANG Xiaomeng ,
  • QIN Mingwei ,
  • ZHAO Xinyue ,
  • SONG Yuzhu ,
  • ZHANG Jinyang ,
  • XIA Xueshan ,
  • HAN Qinqin
Expand
  • (Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China)

Received date: 2020-05-28

  Revised date: 2020-06-15

  Online published: 2020-11-02

Abstract

Amatoxins have extremely strong toxicity as one of the top ten deadly poisons. Mushrooms containing amatoxins play a highly significant role in mushroom poisoning, which lead to 90% of the deaths. Amatoxins poisoning can give rise to acute liver damage and multiple organ failure. What is worse, it has not yet found a specific antidote. So amatoxins are high-risk toxins that have attracted the attention of local food safety monitoring in various countries around the world and it is important to master the high-speed detection technology and method of amatoxins. Based on the introduction of the molecular structure, physical and chemical properties of amatoxins and their impact on humans, this article introduces the rapid detection methods of amatoxins worldwide. The conventional detection methods consist of enzyme-linked immunosorbent assay, lateral flow immunoassay, high performance liquid chromatography, liquid chromatography-mass spectrometry. Moreover, the utilization of hyper branched branched rolling circle amplification and molecular imprinting technique widen the views of amatoxins detection. These detection methods will present various advantages and disadvantages in distinct experimental environments and each has its own applicable conditions. For example, some detection methods are suitable for rapid detection of mushroom samples and some are more suitable for on-site detection. By comparing different characteristics of these methods, it provide an important reference for the laboratory or clinic to establish a more convenient, rapid and sensitive method for detecting amatoxins

Cite this article

ZHANG Xiaomeng , QIN Mingwei , ZHAO Xinyue , SONG Yuzhu , ZHANG Jinyang , XIA Xueshan , HAN Qinqin . Research progress on detection methods of amanita cyclopeptide toxins[J]. Food and Fermentation Industries, 2020 , 46(19) : 295 -300 . DOI: 10.13995/j.cnki.11-1802/ts.024581

References

[1] WIELAND T.Peptides of poisonous amanita mushroomss[M]. Berlin: Springer, 1986.
[2] GUMMIN D D, MOWRY J B, SPYKER D S, et al.Annual report of the American association of poison control centers' national poison data system (NPDS): 35th annual report[J]. Clinical Toxicology, 2018, 56(12): 1 213-1 415.
[3] CERVELLIN G, COMELLI I, RASTELLI G, et al.Epidemiology and clinics of mushroom poisoning in Northern Italy: A 21-year retrospective analysis[J]. Human & Experimental Toxicology, 2018, 37(7): 697-703.
[4] JIANG Li, LUO Meng, HAO Linhui.Epidemiological characteristics of mushroom poisoning in Yunnan province, China, 2004-2016[J]. Southeast Asian Journal of Tropical Medicine & Public Health, 2018, 49: 509-515.
[5] BRANDENBURG W E, WARD K J.Mushroom poisoning epidemiology in the United States[J]. Mycologia, 2018, 110: 637-641.
[6] ALAGZLÜ H, SEZER H, CANDAN F, et al.A survey of patients with acute poisoning in the Sivas region, Turkey, between 1994 and 1998[J]. Turkish Journal of Medicalences, 2002, 32(1): 39-42.
[7] 周静, 袁媛, 郎楠, 等. 中国大陆地区蘑菇中毒事件及危害分析[J].中华急诊医学杂志, 2016, 25(6): 724-728.
[8] VARMA A, GAUR K J, BHATIA P J.Mushrooms and poisoning[J]. Journal of the Indian Medical Association, 2011, 109(11): 826-828.
[9] CHAN C K, LAM H C, CHIU S W, et al.Mushroom poisoning in Hong Kong: A ten-year review[J]. Hong Kong Med J, 2016, 22(2): 124-130.
[10] 任荆蕾, 图力古尔, 包海鹰. 东北地区非鹅膏属真菌中鹅膏肽类毒素的分布[J]. 菌物学报, 2016, 35(9): 1 080-1 098.
[11] MICHELOT D, MELENDEZ-HOWELL L M. Amanita muscaria: Chemistry, biology, toxicology, and ethnomycology[J]. Mycological Research, 2003, 107(Pt 2): 131-146.
[12] 魏佳会, 陈佳, 吴弼东, 等. 高效液相色谱/三重四极杆质谱联用法测定血浆和尿液中鹅膏肽类毒素[J]. 分析化学, 2020, 48(3): 405-412.
[13] 王晓亮, 王星宇, 梁长城, 等. DNA的滚环扩增技术研究进展[J]. 食品工业科技, 2012, 33(16): 358-363.
[14] 郑晗晔. 基于超分支滚环扩增技术的高灵敏DNA生物传感器的研究与应用[D]. 福州: 福州大学, 2014.
[15] 赫庆坤, 张洪芝, 朱文璇, 等. 基于超分支滚环扩增技术的DNA水凝胶的制备及性能研究[J]. 胶体与聚合物, 2018, 36(3): 43-46.
[16] HE Zhengmi, LUO Tao, FAN Fengxia, et al.Universal identification of lethal amanitas by using hyperbranched rolling circle amplification based on a-amanitin gene sequences[J]. Food Chemistry, 2019, 298(15): 1-8.
[17] HE Kuo, MAO Qingwen, ZANG Xiuyuan, et al.Production of a broad-specificity monoclonal antibody and application as a receptor to detection amatoxins in mushroom[J]. Biologicals, 2017, 49: 57-61.
[18] BEVER C S, BARNYCH B, HNASKO R, et al.A new conjugation method used for the development of an immunoassay for the detection of amanitin, a deadly mushroom toxin[J]. Toxins, 2018, 10(7): 265-275.
[19] BEVER C S, HNASKO R M, CHENG L W, et al.A rapid extraction method combined with a monoclonal antibody-based immunoassay for the detection of amatoxins[J]. Toxins, 2019, 11(12): 724-734.
[20] 赵智慧. 人博卡病毒VP2蛋白的纯化及其单克隆抗体的制备[D]. 呼和浩特:内蒙古农业大学, 2012.
[21] 苏亚, 吴怀举, 买买提, 等. 一起鸡大肠杆菌病与非典型新城疫混合感染的防治[J]. 新疆畜牧业, 2013(5): 49-50.
[22] 李巧凤, 任舒悦, 吕全军, 等. 侧流层析试纸在生物及食品安全检测中的研究进展[J]. 国际生物医学工程杂志, 2017, 40(5): 315-322.
[23] 黎睿, 崔华, 谢刚, 等. 几种真菌毒素快速检测技术分析[J]. 粮食科技与经济, 2013(1): 26-28.
[24] MORITA Y, LESLIE M, KAMEYAMA H, et al.Aptamer therapeutics in cancer:Current and future[J]. Cancers, 2018, 10(3): 80-101.
[25] REID R, CHATERJEE B, DAS S, et al.Application of aptamers as molecular recognition elements in lateral flow assays for analytical applications[J]. Analytical Biochemistry, 2020, 593: 113 574.
[26] 陈珠丽. 胶体金免疫层析技术快速检测水中微囊藻毒素-LR的研究[D]. 杭州: 浙江大学, 2011.
[27] BEVER C S, ADAMS C A, HNASKO R M, et al.Lateral flow immunoassay(LFIA) for the detection of Lethal Amatoxins from mushrooms[J]. Plos One, 2020, 15(4): e0231781.
[28] NGOM B, GUO Y, WANG X, et al.Development and application of lateral flow test strip technology for detection of infections agents and chemical contaminants:a review[J]. Analytical and Bioanalytical Chemistry, 2010, 397(3): 1 113-1 135.
[29] SANTI L, MAGGIOLI C, MASTROROBERTO M, et al.Acute liver failure caused by amanita phalloides poisoning[J]. International Journal of Hepatology, 2012, 2012: 487480.
[30] GARCIA J, COSTA V M, BAPTISTA P, et al.Quantification of alpha-amanitin in biological samples by HPLC using simultaneous UV-diode array and electrochemical detection[J]. Journal of Chromatography B, 2015, 997: 85-95.
[31] MAURER H H, KRAEMER T, LEDVINKA O, et al.Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) in toxicological analysis Studies on the detection of clobenzorex and its metabolites within a systematic toxicological analysis procedure by GC-MS and by immunoassay and studies on the detection of a- and β-amanitin in urine by atmospheric pressure ionization electrospray LC-MS[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1997, 689(1) : 81-89.
[32] 李启, 雷永良, 宋瑞强, 等. 鹅膏肽类毒素质谱检测方法的研究进展[J]. 实用预防医学, 2015, 22(11): 1 403-1 407.
[33] 李帮锐, 冯家力, 曾栋, 等. 尿液和血浆中蘑菇毒肽测定的方法学研究[J]. 职业与健康, 2016, 32(20): 2 786-2 791.
[34] ABBOTT N L, HILL K L, ALAINE G, et al.Detection of a-, β-, and γ-amanitin in urine by LC-MS/MS using 15N10-a-amanitin as the internal standard[J]. Toxicon, 2018, 152: 71-77.
[35] 王慎苓,朱化平,王传刚,等. 分子印迹技术及其在农药残留检测中的应用[J]. 食品安全质量检测学报, 2019, 10(7): 1 955-1 960.
[36] 柯珍, 朱华, 钟世安, 等. 分子印迹技术及其应用研究进展[J]. 化学研究与应用, 2018, 30(6): 865-874.
[37] 素维查. β-环糊精衍生的分子印迹聚合物作为选择性吸附剂用于食品安全分析的应用研究[D].杭州: 浙江大学, 2016.
[38] FENG Liming, TAN Lei, LI He, et al.Selective fluorescent sensing of α-amanitin in serum using carbon quantum dots-embedded specificity determinant imprinted polymers[J]. Biosensors & Bioelectronics, 2015, 69: 265-271.
[39] QIU Xiuzhen, CHEN Weimao, LUO Yiling, et al. Highly sensitive α-amanitin sensor based on molecularly imprinted photonic crystals[J]. Analytica Chimica Acta, 2020, 1 093: 142-149.
[40] BEVER C S, SWANSON K D, HAMELIN E I, et al.Rapid, sensitive, and accurate point-of-care detection of lethal amatoxins in urine[J]. Toxins, 2020, 12(2):123-132.
Outlines

/