Antimicrobial mechanism of metal antimicrobial peptide SIF4 against Escherichia coli

  • XIAO Huaiqiu ,
  • LI Yuzhen ,
  • LIN Qinlu ,
  • ZHAO Mouming ,
  • ZHOU Quan ,
  • ZHAO Yichun
Expand
  • 1(School of Pharmaceutical and Bioengineering,Hunan Chemical Vocational Technology College,Zhuzhou 412000,China)
    2(College of Food Science and Engineering,Central South University of Forestry and Technology,Changsha 410004,China)
    3(College of Food Science and Engineering,South China University of Technology,Guangzhou 510000,China)

Received date: 2021-04-19

  Revised date: 2021-05-07

  Online published: 2022-01-27

Abstract

The antimicrobial mechanism of SIF4 against Escherichia coli from cell wall permeability (CWP), intracellular K+ and biomacromolecule leakage, cell surface hydrophobicity (CSH), cell membrane permeability (CMP) and cell surface zeta potential (CSZP) were investigated. Results showed that minimum inhibition concentration of SIF4 was 0.4 mg/L. The stationary phase and decline phase of E.coli came early after treated by SIF4. CWP had a positively correlation with the SIF4 concentration and incubation time, after 1.0 h incubation, there was a significant difference between groups (P<0.05). The leakage of intracellular K+ was enhanced with the increase of SIF4 concentration and incubation time; the leakage of intracellular biomacromolecules also increased with the increase of SIF4 concentration and incubation time, and there was a significant difference between the experimental group and the control group after 2 h incubation (P<0.05). CSH increased gradually with the increase of SIF4 concentration, and the cell membrane damaging caused by SIF4 might be carried out in “carpet model”. The CSZP had a linear decreasing tendency against SIF4 concentration. The research confirmed that SIF4 could destroy cell wall/membrane structure, cause leakage of intracellular substances, enhance CSH, reduce zeta potential, cause cell aggregation and metabolic disorder, and eventually induce cell apoptosis. All results deem that SIF4 could be adopted potentially as a new food antibacterial agent for the biological inhibition of E. coli.

Cite this article

XIAO Huaiqiu , LI Yuzhen , LIN Qinlu , ZHAO Mouming , ZHOU Quan , ZHAO Yichun . Antimicrobial mechanism of metal antimicrobial peptide SIF4 against Escherichia coli[J]. Food and Fermentation Industries, 2022 , 48(1) : 111 -116 . DOI: 10.13995/j.cnki.11-1802/ts.027742

References

[1] LEÓN MADRAZO A,SEGURA CAMPOS M R.Review of antimicrobial peptides as promoters of food safety:Limitations and possibilities within the food industry[J].Journal of Food Safety,2020,40(6):e12854.
[2] 曹铁红, 刘桂华.通化市2014-2018年肉与肉制品中食源性致病菌检测结果分析[J].中国卫生工程学,2020,19(1):39-41.
CAO T H,LIU G H.Analysis on detection results of foodborne pathogens in meat and meat products in Tonghua city from 2014 to 2018[J].Chinese Journal of Public Health Engineering,2020,19(1):39-41.
[3] 国译丹,范璐,汤小召,等.2018年云南省外卖餐饮的微生物污染状况调查[J].食品安全质量检测学报,2019,10(22):7 633-7 638.
GUO Y D,FAN L,TANG X Z,et al.Investigation on microbial contamination status of takeaway catering in Yunnan Province in 2018[J].Journal of Food Safety & Quality,2019,10(22):7 633-7 638.
[4] 张艳,蒋君,伏子奇.2015—2017年南充市熟肉制品加工过程微生物污染情况监测[J].预防医学情报杂志,2018,34(11):1 410-1 413.
ZHANG Y,JIANG J,FU Z Q.Surveillance of microbial contamination in processing of cooked-meat products in Nanchong from 2015 to 2017[J].Journal of Preventive Medicine Information,2018,34(11):1 410-1 413.
[5] 肖怀秋, 李玉珍,林亲录,等.抗菌肽多靶点作用抑菌机理研究进展[J].食品与生物技术学报,2021,40:1-9.
XIAO H Q,LI Y Z,LIN Q L,et al.Advances on multiple-targets action mechanism of antimicrobial peptides[J].Journal of Food Science and Biotechnology,2021,40:1-9.
[6] FU J,YANG H,WANG H, et al.Antimicrobial peptide bsn-37 inhibits the growth of Escherichia coli by targeting its cell wall and membrane[J].Material Express,2020,10(8):1 260-1 264.
[7] MORRONI G,SANTE L D,SIMONETTI O,et al.Synergistic effect of antimicrobial peptide LL-37 and colistin combination against multidrug-resistant Escherichia coli isolates[J].Future Microbiology,2021,16:221-227.
[8] YI L H,ZENG P,LIU J,et al.Antimicrobial peptide zp37 inhibits Escherichia coli O157:H7 in alfalfa sprouts by inflicting damage in cell membrane and binding to DNA[J].LWT,2021,146:111392.
[9] 肖怀秋, 李玉珍,林亲录,等.花生肽亚铁胃肠仿生消化产物对金黄色葡萄球菌的抑菌机理研究[J].食品与发酵工业,2020,46(18):111-116.
XIAO H Q,LI Y Z,LIN Q L,et al.Antibacterial mechanism of gastrointestinal biomimetic digestants from peanut peptide-ferrous on Staphylococcus aureus[J].Food and Fermentation Industries,2020,46(18):111-116.
[10] 肖怀秋, 李玉珍,林亲录,等.金属抗菌肽SIF4在人工模拟食品体系中的抑菌稳定性[J].食品与发酵工业,2021,47(22):121-125.
XIAO H Q,LI Y Z,LIN Q L,et al.Antimicrobial stability of metal antimicrobial peptide SIF4 in artificial simulated food systems[J].Food and Fermentation Industries,2021,47(22):121-125.
[11] MARRI L,DALLAI R,MARCHINI D.The novel antibacterial peptide ceratotoxin A alters permeability of the inner and outer membrane of Escherichia coli K-12[J].Current Microbiology,1996,33(1):40-43.
[12] 唐文婷. 基于肽—膜相互作用的模拟细胞膜法筛选抗菌肽的研究[D].无锡:江南大学,2014.
TANG W T.Research of screening for antimicrobial peptides by mimic cell membrane based on peptide-membrane interaction[D].Wuxi:Jiangnan University,2014.
[13] HAO K Y,XU B C,ZHANG G Y,et al.Antibacterial activity and mechanism of Litsea cubeba L.essential oil against Acinetobacter baumannii[J].Natural Product Communications,2021,16(3):1934578X2199914.
[14] PELLETIER C,BOULEY C,CAYUELA C,et al.Cell surface characteristics of Lactobacillus casei subsp.casei,Lactobacillus paracasei subsp.paracasei,and Lactobacillus rhamnosus strains[J].Applied & Environmental Microbiology,1997,63(5):1 725.
[15] 陈飞龙. Lactobacillus paracasei FX-6产抗菌肽对金黄色葡萄球菌作用机制及其应用研究[D].广州:华南农业大学,2016.
CHEN F L.The action mechanism on Staphylococcus aureus and application of antimicrobial peptide produced by Lactobacillus paracasei FX-6[D].Guangzhou:South China Agricultural University,2016.
[16] OKABAYASHI K,FUTAI M,MIZUNO D.Localization of acid and alkaline phosphatases in Staphylococcus aureus[J].Japanese Journal of Microbiology,1974,18(4):287-294.
[17] AGBALE C M,SARFO J K,GALYUON I K,et al.Antimicrobial and antibiofilm activities of helical antimicrobial peptide sequences incorporating metal-binding motifs[J].Biochemistry,2019,58(36):3 802-3 812.
[18] 李婷,杨舒然,陈敏,等.姜厚朴水提物对大肠杆菌和金黄色葡萄球菌的抑菌机理研究[J].现代食品科技,2016,32(2):84-92.
LI T,YANG S R,CHEN M,et al.Antibacterial mechanism of ginger mix-fried magnolia bark extract against Escherichia coli and Staphylococcus aureus[J].Modern Food Science and Technology,2016,32(2):84-92.
[19] HAKTANIR I,MASOURA M,MANTZOURIDOU F T,et al.Mechanism of antimicrobial activity of honeybee(Apis mellifera) venom on Gram-negative bacteria:Escherichia coli and Pseudomonas spp[J].AMB Express,2021,11(1):54.
[20] HAN Y J,SUN Z C,CHEN W X.Antimicrobial susceptibility and antibacterial mechanism of limonene against Listeria monocytogenes[J].Molecules(Basel,Switzerland),2019,25(1):E33.
[21] 戴锦铭. 山苍子精油对大肠杆菌O157:H7抗菌机制研究及在果蔬汁中的应用[D].镇江:江苏大学,2019.
DAI J M.Antibacterial mechanism of Litsea cubeba essential oil against Escherichia coli O157:H7 and its application in vegetable juice[D].Zhenjiang:Jiangsu University,2019.
[22] MIOZZARI G F,NIEDERBERGER P,HüTTER R.Permeabilization of microorganisms by TritonX-100[J].Analytical Biochemistry,1978,90(1):220-233.
[23] 侯利霞, 翟培,施用晖,等.家蝇抗菌肽对细菌细胞表面特性影响及其作用机理的研究[J].微生物学通报,2007,34(3):434-437.
HOU L X,ZHAI P,SHI Y H,et al.Effect on the bacterial cell surface characteristics and cell membrane of the antibacterial peptide of housefly(Musca domestica)[J].Microbiology China,2007,34(3):434-437.
[24] AZIMI S,THOMAS J,CLELAND S E,et al.Cell surface hydrophobicity determines Pseudomonas aeruginosa aggregate assembly[J].bioRxiv,2021,DOI:10.1101/2021.01.14.42 6723.
[25] LEE D G,KIM H N,PARK Y,et al.Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide,HP(2-20),derived from N-terminus of Helicobacter pylori ribosomal protein L1[J].BBA-Proteins Proteomics,2002,1 598(1):185-194.
[26] 赵清风, 陈介南,张林,等.AgNO3对大肠杆菌和金黄色葡萄球菌的抗菌作用及机制[J].生物加工过程,2011,9(3):52-56.
ZHAO Q F,CHEN J N,ZHANG L,et al.Antimicrobial activity and mechanism of silver nitrate on Escherichia coli and Staphylococcus aureus[J].Chinese Journal of Bioprocess Engineering,2011,9(3):52-56.
[27] KWON J,KANG H Y,YANG H.Permeabilization-free β-galactosidase-induction-based electrochemical detection of Escherichia coli[J].Sensors and Actuators B:Chemical,2021,337:129768.
[28] ZHANG X R,JIANG Z Y,YUAN H,et al.Influence of surface zeta potential on adhesion of Chlorella sp. to substratum surfaces[J].Advanced Materials Research,2013,690-693:1 431-1 434.
[29] CHAN M Y Y,BELL D J,DUNNIL P.The relationship between the zeta potential and the size of soya protein acid precipitate particles[J].Biotechnology and Bioengineering,1982,24(8):1 897-1 900.
Outlines

/