An online method for predicting acidity value,water and starch content in fermented grains of light-flavor Baijiu

  • WANG Kun ,
  • TUO Xianguo ,
  • ZHANG Guiyu ,
  • LUO Lin ,
  • LUO Qi ,
  • LIU Jie
Expand
  • 1(Artificial Intelligence Key Laboratory of Sichuan Province,Sichuan University of Science & Engineering,Yibin 644000,China)
    2(School of Automation&Information Engineering,Sichuan University of Science & Engineering,Yibin 644000,China)
    3(School of Information Engineering,Southwest University of Science and Technology,Mianyang 621010,China)

Received date: 2021-06-01

  Revised date: 2021-08-17

  Online published: 2022-04-27

Abstract

The current inspection of acidity value,water and starch content of fermented grains can only be performed offline through chemical methods, which are very complex with heavy workload. Through the research on the fermentation mechanism, the oxygen, carbon dioxide, humidity and temperature generated during the fermentation process were collected as the monitoring indicators, and an automated system to collect fermentation parameters was established with the multi-sensor monitoring technology by the wireless communication network. At the same time, chemical methods are used to detect three indicators of the fermented-grain samples, namely, moisture, acidity value and starch content. With oxygen, carbon dioxide, humidity and temperature values of the fermentation environment as independent variables, and with the moisture, acidity value and starch content as dependent variables, a partial least squares soft-sensing model was established, and a multi-element linear regression model was established for comparison. The result of comparison confirmed that partial least squares regression was the best. The root mean square error of the model was 1.89, 0.12, 1.93, and it was concluded that the influence from oxygen and carbon dioxide on the acid value and starch content was extremely critical, followed by temperature and humidity.

Cite this article

WANG Kun , TUO Xianguo , ZHANG Guiyu , LUO Lin , LUO Qi , LIU Jie . An online method for predicting acidity value,water and starch content in fermented grains of light-flavor Baijiu[J]. Food and Fermentation Industries, 2022 , 48(7) : 85 -90 . DOI: 10.13995/j.cnki.11-1802/ts.028164

References

[1] 孙宝瑞.白酒包装文化的国际传播研究[J].西部皮革,2020,42(18):111-112.
SUN B R.Study on the international dissemination of liquor packaging culture[J].West Leather,2020,42(18):111-112.
[2] 刘丽丽,杨辉,荆雄,等.基于GC-IMS和电子鼻技术分析贮酒容器对凤香型白酒成分差异性的影响[J/OL].食品科学,2021.https://kns.cnki.net/kcms/detail/11.2206.TS.20210524.0833.004.html.
LIU L L,YANG H,JING X,et al.Influence of different storage containers on the flavor of Fengxiang Baijiu composition based on GC-IMS and electronic nose technology[J/OL].Food Science,2021.https://kns.cnki.net/kcms/detail/11.2206.TS.20210524.0833.004.html.
[3] 赵坤.基于多元数据分析对白酒年份检测的研究应用进展[J].食品安全导刊,2021(14):12-13.
ZHAO K.Research and application progress of liquor year detection based on multivariate data analysis[J].China Food Safety Magazine,2021(14):12-13.
[4] 高银涛,何璇,余博文,等.白酒固态双边发酵糖化机理及其对发酵过程的影响[J].食品与发酵工业,2021,47(13):92-97.
GAO Y T,HE X,YU B W,et al.Saccharification mechanism of solid-state fermentation of Chinese Baijiu and its influence on fermentation process[J].Food and Fermentation Industries,2021,47(13):92-97.
[5] 王柏文,吴群,徐岩,等.中国白酒酒曲微生物组研究进展及趋势[J].微生物学通报,2021,48(5):1 737-1 746.
WANG B W,WU Q,XU Y,et al.Recent advances and perspectives in study of microbiome in Chinese Jiuqu starter[J].Microbiology China,2021,48(5):1 737-1 746.
[6] 闫涵,范文来,徐岩.单粮和多粮型白酒发酵过程的成分差异分析[J].食品科学,2021,42(16):133-137.
YAN H,FAN W L,XU Y.Difference in the composition of baijiu made from single and multiple grains during fermentation[J].Food Science,2021,42(16):133-137.
[7] 董浩.基于ZigBee技术白酒储藏环境无线监测系统设计[D].合肥:安徽大学,2020.
DONG H.Design of wireless monitoring system for liquor storage environment based on ZigBee technology[D].Hefei:Anhui University,2020.
[8] 周新奇,郑启伟,刘妍,等.基于近红外光谱技术的白酒酒醅在线监测研究[J].分析测试学报,2020,39(11):1 358-1 364.
ZHOU X Q,ZHENG Q W,LIU Y,et al.Online monitoring of fermented grains parameters for Chinese liquor brewing based on near infrared spectroscopy[J].Journal of Instrumental Analysis,2020,39(11):1 358-1 364.
[9] 熊亚,李敏杰.红茶菌酒发酵动力学模型的建立及抗氧化性研究[J].食品科技,2020,45(11):90-95.
XIONG Y,LI M J.Research on fermentation kinetic model and antioxidant activity of kombucha wine[J].Food Science and Technology,2020,45(11):90-95.
[10] 宗原,刘登峰,刘以安.基于改进蚁狮优化算法的黄酒发酵过程模型的参数辨识[J].食品与发酵工业,2021,47(2):153-159.
ZONG Y,LIU D F,LIU Y A.Model parameter identification of rice wine fermentation process based on an improved ant lion algorithm[J].Food and Fermentation Industries,2021,47(2):153-159.
[11] 王正,王石垒,吴群,等.谷物蛋白对白酒发酵过程中微生物群落及其代谢多样性的调控[J].微生物学通报,2021,48(11):4 167-4 177.
WANG Z,WANG S L,WU Q,et al.Regulation of cereal protein on the microbial and metabolic diversity during the Chinese liquor fermentation[J].Microbiology China,2021,48(11):4 167-4 177.
[12] 潘妍如.基于代谢网络的发酵过程模型化研究[D].无锡:江南大学,2020.
PAN Y R.Modeling of fermentation process based on metabolic network[D].Wuxi:Jiangnan University,2020.
[13] DUFOURNY S,EVERAERT N,LEBRUN S,et al.Oxygen as a key parameter in in vitro dynamic and multi-compartment models to improve microbiome studies of the small intestine?[J].Food Research International,2020,133:109127.
[14] 张方,张宿义,苏占元,等.有机酸对浓香型白酒品质及其酿造过程影响的研究进展[J].酿酒科技,2016(1):94-97;102.
ZHANG F,ZHANG S Y,SU Z Y,et al.Research progress in the effects of organic acids on the quality of Nongxiang Baijiu and its production process[J].Liquor-Making Science & Technology,2016(1):94-97;102.
[15] 贾丽艳,郭晋田,刘帅,等.清香型白酒发酵过程中微生物及理化指标的变化规律[J].中国食品学报,2020,20(8):162-167.
JIA L Y,GUO J T,LIU S,et al.The changes of microbiology and physicochemical indexes during the brewing process of mild flavour Baijiu[J].Journal of Chinese Institute of Food Science and Technology,2020,20(8):162-167.
[16] 叶建秋,黄丹平,田建平,等.高光谱图像技术检测大曲发酵过程中的水分含量[J].食品与发酵工业,2020,46(9):250-254.
YE J Q,HUANG D P,TIAN J P,et al.Detection of water content in Daqu during fermentation using hyperspectral image technology[J].Food and Fermentation Industries,2020,46(9):250-254.
[17] 郑蓉建,潘丰.基于PLS-LSSVM的谷氨酸发酵产物浓度预测建模[J].化工学报,2017,68(3):976-983.
ZHENG R J,PAN F.Prediction of product concentration in glutamate fermentation process using partial least squares and least square support vector machine[J].CIESC Journal,2017,68(3):976-983.
[18] 陈树,任召金.基于FTSVM的固态发酵预测模型的研究[J].计算机与数字工程,2018,46(4):772-778.
CHEN S,REN Z J.Study on prediction model of solid state fermentation based on FTSVM[J].Computer and Digital Engineering,2018,46(4):772-778.
[19] 熊印国.改进的FCM-LSSVM青霉素发酵过程预测建模[J].控制工程,2017,24(11):2 237-2 242.
XIONG Y G.Improved FCM-LSSVM prediction model for penicillin fed-batch fermentation[J].Control Engineering of China,2017,24(11):2 237-2 242.
[20] 栗连会,肖辰,陆震鸣,等.泸型酒发酵酒醅中乳酸菌群落的来源、演替规律及功能预测[J].食品与生物技术学报,2018,37(12):1 242-1 247.
LI L H,XIAO C,LU Z M,et al.Origin,succession and potential function of lactic acid bacteria in fermented grains of Luzhou-flavor liquor[J].Journal of Food Science and Biotechnology,2018,37(12):1 242-1 247.
[21] 桂勇利,梁静波,马雷,等.基于近红外技术谷氨酸发酵过程中乳酸浓度预测模型的建立[J].食品与发酵工业,2014,40(8):1-6.
GUI Y L,LIANG J B,MA L,et al.Model construction for lactate concentration prediction in glutamate fermentation process relying on near-infrared spectroscopy technology[J].Food and Fermentation Industries,2014,40(8):1-6.
[22] ZHOU Z Y.Fast implementation of partial least squares for function-on-function regression[J].Journal of Multivariate Analysis,2021,185:104769.
[23] SAID M,TAOUALI O.Improved dynamic optimized kernel partial least squares for nonlinear process fault detection[J].Mathematical Problems in Engineering,2021,2021:6677944.
[24] 李赛楠,吕欣欣,林熙,等.基于近红外光谱技术建立火炬松针叶表儿茶素含量的预测模型[J/OL].分子植物育种,2021.https://kns.cnki.net/kcms/detail/46.1068.S.20210518.1635.016.html.
LI S N,LYU X X,LIN X,et al.Prediction model of L-epicatechin content in Pinus taeda based on near infrared spectroscopy[J/OL].Molecular Plant Breeding,2021.https://kns.cnki.net/kcms/detail/46.1068.S.20210518.1635.016.html.
[25] 肖志云,徐新宇.基于偏最小二乘与随机森林的土壤盐含量反演研究[J].安徽农业科学,2021,49(8):10-15;25.
XIAO Z Y,XU X Y.Research on inversion of soil salt content based on partial least squares combined with random forest[J].Journal of Anhui Agricultural Sciences,2021,49(8):10-15;25.
Outlines

/