Separation and purification of antimicrobial peptides from lactoferrin by DA201-C macroporous adsorbent resin

  • ZHANG Lin ,
  • CAI Yinchuan ,
  • HAO Gang ,
  • HU Ting ,
  • JIANG Siyu
Expand
  • 1(College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China)
    2(The Research Institute of Industrial Economy of Aba, Wenchuan 623000, China)

Received date: 2021-10-22

  Revised date: 2021-11-12

  Online published: 2022-12-20

Abstract

In this study, the separation and purification conditions of lactoferrin antimicrobial peptide solution (molecular weight<3 000) treated by ultrafiltration with DA201-C macroporous resin were optimized by using adsorption capacity, resin dynamic adsorption and gradient elution of different ethanol concentrations as indexes. Static adsorption results showed that the adsorption capacity was 479.7 mg/g and the adsorption rate was 95.94% after 12 h of resin adsorption. Static desorption of saturated resin with different concentrations of ethanol showed that the desorption rate of 75% (volume fraction) ethanol reached 95.35%. The optimal adsorption conditions were determined as follows: NaCl concentration 0.6 mol/L, loading flow rate 1.5 mL/min and loading mass concentration 20 mg/mL. The gradient elution of lactoferrin antimicrobial peptides with different concentrations of ethanol was used as the index. The results showed that 75% ethanol eluted fraction had the strongest antibacterial activity against E. coli and Staphylococcus aureus, and the antibacterial rates of E. coli and Staphylococcus aureus reached 80.95% and 74.42%, respectively, which increased about 12.2% compared with before purification. Amino acid analysis of different elution components showed that the greater hydrophobicity and positive charge of the antimicrobial peptides, the stronger antibacterial activity.

Cite this article

ZHANG Lin , CAI Yinchuan , HAO Gang , HU Ting , JIANG Siyu . Separation and purification of antimicrobial peptides from lactoferrin by DA201-C macroporous adsorbent resin[J]. Food and Fermentation Industries, 2022 , 48(22) : 213 -219 . DOI: 10.13995/j.cnki.11-1802/ts.029775

References

[1] 陈立平, 赵平, 任广旭, 等.乳铁蛋白的研究现状与进展[J].农产品加工, 2019(8):68-70.
CHEN L P, ZHAO P, REN G X, et al.Research status and progress of lactoferrin[J].Farm Products Processing, 2019(8):68-70.
[2] 肖红艳, 兰欣怡, 张佩华.乳铁蛋白生物学功能研究进展[J].中国奶牛, 2021(4):46-50.
XIAO H Y, LAN X Y, ZHANG P H.Research progress in biological function of lactoferrin[J].China Dairy Cattle, 2021(4):46-50.
[3] 刘水灵, 安清聪.乳铁蛋白的免疫功能及其在养猪生产上的应用[J].家畜生态学报, 2017, 38(11):80-83.
LIU S L, AN Q C.Application of lactoferrin and its immune function in swine production[J].Journal of Domastici Animali Ecology, 2017, 38(11):80-83.
[4] CORNISH J, CALLON K E, NAOT D, et al.Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo [J].Endocrinology, 2004, 145(9):4 366-4 374.
[5] 安芹, 汪雄, 王文利, 等.乳铁蛋白调控脂肪细胞发育代谢的研究进展[J/OL].食品科学, 2022,43(17):372-379.
AN Q, WANG X, WANG W L, et al.Research progress of lactoferrin in regulating the development and metabolism of adipocytes[J].Food Science, 2022,43(17):372-379.
[6] EVANS J C, MURUGESAN D, POST J M, et al.Targeting Mycobacterium tuberculosis CoaBC through chemical inhibition of 4'-phos- phopantothenoyl-l-cysteine synthetase (CoaB) activity[J].ACS Infectious Diseases, 2021, 7(6):1 666-1 679.
[7] WANG B, TIMILSENA Y P, BLANCH E, et al.Lactoferrin:Structure, function, denaturation and digestion[J].Critical Reviews in Food Science and Nutrition, 2019, 59(4):580-596.
[8] RUIZ-GIMÉNEZ P, SALOM J B, MARCOS J F, et al.Antihypertensive effect of a bovine lactoferrin pepsin hydrolysate:Identification of novel active peptides[J].Food Chemistry, 2012, 131(1):266-273.
[9] 王新保. 乳铁蛋白抗菌肽的制备及分离纯化[D].无锡:江南大学, 2008.
WANG X B.Preparation and isolation of lactoferrin antimicrobial peptide[D].Wuxi:Jiangnan University, 2008.
[10] 薛媛, 杨沫, 魏君慧, 等.白灵菇蛋白质的理化及功能特性[J].食品工业科技, 2018, 39(16):37-41.
XUE Y, YANG M, WEI J H, et al.Physicochemical and functional properties of protein from Pleurotus nebrodensis[J].Science and Technology of Food Industry, 2018, 39(16):37-41.
[11] 胡二坤, 郭兴凤, 郑慧.凝胶过滤色谱分离纯化鱼蛋白酶解产物[J].食品工业, 2020, 41(12):240-243.
HU E K, GUO X F, ZHENG H.Separation and purification of fish protein hydrolysate by gel chromatography[J].The Food Industry, 2020, 41(12):240-243.
[12] SUN X D, DONG J, LI J N, et al.Facile preparation of polysaccharide functionalized macroporous adsorption resin for highly selective enrichment of glycopeptides[J]. Journal of Chromatography A, 2017, 1498: 72-79.
[13] 张巧智, 毕爽, 马文君, 等.水酶法水解液中大豆多肽的吸附纯化及其氨基酸组成分析[J].大豆科技, 2019(S1):416-424.
ZHANG Q Z, BI S, MA W J, et al.Purification and amino acid composition of peptides from soybean byproduct protein hydrolysate from aqueous enzymatic extraction of soybean oil[J].Soybean Science and Technology, 2019(S1):416-424.
[14] 魏达凤, 朱瑜瑜, 王杨, 等.大孔树脂分离纯化枸杞多糖的研究[J].山东化工, 2019, 48(2):25-27;32.
WEI D F, ZHU Y Y, WANG Y, et al.Study on separation and purification of Lycium barbarum polysaccharide with macroporous resin[J].Shandong Chemical Industry, 2019, 48(2):25-27;32.
[15] HOU M Y, ZHANG L B.Adsorption/desorption characteristics and chromatographic purification of polyphenols from Vernonia patula (Dryand.) Merr.using macroporous adsorption resin[J].Industrial Crops & Products, 2021, 170:113729.
[16] 潘道东, 林璐.DA201-C大孔吸附树脂静态吸附ACE抑制肽的研究[J].食品科学, 2009, 30(5):20-23.
PAN D D, LIN L.Study on static adsorption of angiotensin converting enzyme inhibitory peptide onto DA201-C macroporous resin[J].Food Science, 2009, 30(5):20-23.
[17] 程云辉, 王璋, 许时婴.大孔吸附树脂对麦胚肽的吸附特性研究[J].食品与机械, 2005, 21(6):7-12.
CHENG Y H, WANG Z, XU S Y.Study on adsorption and separation of macroporous resin for wheat germ peptide[J].Food and Machinery, 2005, 21(6):7-12.
[18] 刁静静, 陈洪生, 李朝阳.单柱层析分离高活性玉米抗氧化肽技术参数的研究[J].食品工业, 2018, 39(1):92-96.
DIAO J J, CHEN H S, LI C Y.Technique parametric of separation and purification of zein antioxidant peptides with chromatographic fractionation[J].The Food Industry, 2018, 39(1):92-96.
[19] 张晨玥. 乳铁蛋白水解物中抗菌肽的分离纯化[D].成都:西南民族大学, 2021.
ZHANG C Y.Isolation and purification of antimicrobial peptides from lactoferrin hydrolysates[D].Chengdu:Southwest Minzu University, 2021.
[20] LEVIN R, BRAUER R W.The biuret reaction for the determination of proteins;an improved reagent and its application[J].The Journal of Laboratory and Clinical Medicine, 1951, 38(3):474-480.
[21] ZHANG X Y, LIU C, NEPAL S, et al.A hybrid approach for scalable sub-tree anonymization over big data using MapReduce on cloud[J]. Journal of Computer and System Sciences, 2014, 80(5):1 008-1 020.
[22] 康媛媛, 孟珺, 王艳阳, 等.抗菌肽功能特性与作用机制的研究进展[J].食品科技, 2021, 46(1):265-270.
KANG Y Y, MENG J, WANG Y Y, et al.Research progress on functional characteristics and mechanism of antimicrobial peptides[J].Food Science and Technology, 2021, 46(1):265-270.
[23] SUN J B, XIA Y Q, LI D, et al.Relationship between peptide structure and antimicrobial activity as studied by de novo designed peptides[J].Biochimica et Biophysica Acta, 2014, 1 838(12):2 985-2 993.
[24] JIANG Z Q, KULLBERG B J, VAN DER LEE H, et al.Effects of hydrophobicity on the antifungal activity of α-helical antimicrobial peptides[J].Chemical Biology & Drug Design, 2008, 72(6):483-495.
[25] SINGH S, PAPAREDDY P, KALLE M, et al.Effects of linear amphiphilicity on membrane interactions of C-terminal thrombin peptides[J].RSC Adv, 2014, 4(71):37 582-37 591.
Outlines

/