Abscisic acid (S-ABA) is one of the five major plant growth regulators, widely used in modern agriculture. It has many functions such as enhancing plant resistance to stress, preserving flowers and fruits, promoting fruit color change, increasing sugar, and reducing acid. Multiple plant pathogenic fungi can be synthesized, and Botrytis cinerea is widely used for production. This article uses response surface methodology to investigate the effects of key nutritional and process conditions such as carbon nitrogen ratio, initial pH, CaCO3 content, stirring speed, ventilation conditions, and inoculation amount on the morphology and S-ABA production of B. cinerea. The optimal fermentation conditions were determined as follows: Carbon nitrogen ratio of 25, stirring intensity of 535 r/min, initial pH of 5.1, inoculation amount of 11%, ventilation rate of 1.0 vvm, and optimal mycelium ball size of 0.95 mm. Under this condition, the production of S-ABA increased by approximately 8.23%.
[1] 施天穹, 彭辉, 季荣钰, 等. 微生物发酵法产脱落酸的研究进展[J]. 化工进展, 2016, 35(7):2140-2144.
SHI T Q, PENG H, JI R Y, et al. Production of abscisic acid by fermentation: A review[J]. Chemical Industry and Engineering Progress, 2016, 35(7):2140-2144.
[2] 解艳玲, 杜军, 沈振荣, 等. S-诱抗素研究进展[J]. 安徽农业科学, 2013, 41(4):1517-1518; 1554.
XIE Y L, DU J, SHEN Z R, et al. Research advance of S-auxin[J]. Journal of Anhui Agricultural Sciences, 2013, 41(4):1517-1518; 1554.
[3] 谭红. 真菌发酵生产天然脱落酸[J]. 精细与专用化学品, 2002, 10(24):16-18.
TAN H. Natural abscisic acid produced by fungus fermentation[J]. Fine and Specialty Chemicals, 2002, 10(24):16-18.
[4] 郑珩, 吴江, 吴梧桐. 脱落酸产生菌的遗传育种[J]. 菌物系统, 1999, 18(2):164-167.
ZHENG H, WU J, WU W T. Mutation and selection of high producing strains of abscisic acid[J]. Mycosystema, 1999, 18(2):164-167.
[5] MARUMO S, KATAYAMA M, KOMORI E, et al. Microbial production of abscisic acid by Botrytis cinerea[J]. Agricultural and Biological Chemistry, 1982, 46(7):1967-1968.
[6] DRIOUCH H, HÄNSCH R, WUCHERPFENNIG T, et al. Improved enzyme production by bio-pellets of Aspergillus niger: Targeted morphology engineering using titanate microparticles[J]. Biotechnology and Bioengineering, 2012, 109(2):462-471.
[7] SABERI A, JALILI H, NIKFARJAM A, et al. Monitoring of Aspergillus terreus morphology for the lovastatin production in submerge culture by impedimetry[J]. Biochemical Engineering Journal, 2020, 159:107615.
[8] MIYAZAWA K, YOSHIMI A, ABE K. The mechanisms of hyphal pellet formation mediated by polysaccharides, α-1, 3-glucan and galactosaminogalactan, in Aspergillus species[J]. Fungal Biology and Biotechnology, 2020, 7(1):1-13.
[9] BIZUKOJC M, LEDAKOWICZ S. The morphological and physiological evolution of Aspergillus terreus mycelium in the submerged culture and its relation to the formation of secondary metabolites[J]. World Journal of Microbiology and Biotechnology, 2010, 26(1):41-54.
[10] 周欣欣, 陈立萍, 王宁, 等. S-诱抗素(ABA)产业发展现状及展望[J]. 农药科学与管理, 2017, 38(10):21-24.
ZHOU X X, CHEN L P, WANG N, et al. Current situation and prospects of abscisic acid(ABA) industry[J]. Pesticide Science and Administration, 2017, 38(10):21-24.
[11] 郑珩, 盛海林, 吴江, 等. 脱落酸产生菌液体发酵培养基的优化[J]. 中国药科大学学报, 1999, 30(6): 460-462.
ZHENG H, SHENG H L, WU J, et al. Optimization of liquid fermentation condition of abscisic acid producing strains[J]. Journal of China Pharmaceutical University, 1999, 30(6): 460-462.
[12] YANG X L, XIANG L B, ZHANG C, et al. Promotion of monacolin K production in Monascus extractive fermentation: The variation in fungal morphology and in the expression levels of biosynthetic gene clusters[J]. Journal of the Science of Food and Agriculture, 2021, 101(13):5652-5659.
[13] 刘瑞桑, 汤亚杰, 白凤武. 丝状真菌液体深层发酵过程菌丝聚集的调控机制[J]. 生物工程学报, 2019, 35(5):749-758.
LIU R S, TANG Y J, BAI F W. Regulatory mechanism underlying mycelium aggregation during filamentous fungi submerged fermentation[J]. Chinese Journal of Biotechnology, 2019, 35(5):749-758.
[14] CHEN X L, ZHOU J, DING Q, et al. Morphology engineering of Aspergillus oryzae for l-malate production[J]. Biotechnology and Bioengineering, 2019, 116(10):2662-2673.
[15] HUARTE-BONNET C, PAIXÃO F R S, MASCARIN G M, et al. The entomopathogenic fungus Beauveria bassiana produces microsclerotia-like pellets mediated by oxidative stress and peroxisome biogenesis[J]. Environmental Microbiology Reports, 2019, 11(4):518-524.
[16] DU L Q, GAO B L, LIANG J F, et al. Microparticle-enhanced Chaetomium globosum DX-THS3 β-d-glucuronidase production by controlled fungal morphology in submerged fermentation[J]. 3 Biotech, 2020, 10(3):100.
[17] CAIRNS T C, ZHENG X M, ZHENG P, et al. Moulding the mould: Understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories[J]. Biotechnology for Biofuels, 2019, 12:77.
[18] VEITER L, RAJAMANICKAM V, HERWIG C. The filamentous fungal pellet—Relationship between morphology and productivity[J]. Applied Microbiology and Biotechnology, 2018, 102(7):2997-3006.
[19] 唐文俊,夏建业,储炬,等.黑曲霉发酵过程中菌体形态的分析方法建立及应用.生物工程学报, 2015, 31(2): 291-299.
TANG W J, XIA J Y, CHU J, et al. Development and application of morphological analysis method in Aspergillus niger fermentation.Chin J Biotech, 2015, 31(2): 291-299.
[20] 姚晨涛, 刘铭钰, 孙晓, 等. 高效液相色谱法测定S-诱抗素及对其设计浓度验证. 现代农药, 2019, 18(3):32-35.
YAO C T, LIU M Y, SUN X, et al. Determination of S-ABA and design concentration by high performance liquid chromatography. Modern Agrochemicals, 2019, 18(3):32-35.