Research progress on the production of 2′-fucosyllactose in metabolic engineering

  • TU Bance ,
  • HUANG Guangwen ,
  • HUANG Mingzhu ,
  • LIU Bin ,
  • CHEN Xuelan
Expand
  • 1(College of Life Science and National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330027, China)
    2(Health College, Jiangxi Normal University, Nanchang 330027, China)

Received date: 2023-03-02

  Revised date: 2023-04-07

  Online published: 2024-02-27

Abstract

Human milk oligosaccharides (HMOs) are important components presenting in human breast milk and closely related to the health and development of infants. 2-Fucosyllactose (2′-FL), as the most abundant component in HMO, has significant nutritional and medicinal value, such as promoting infant brain development and improving infant immunity. At present, the synthesis methods of 2′-FL include direct extraction, chemical synthesis, enzymatic synthesis, and microbial fermentation. However, there are many limitations and deficiencies in direct extraction, chemical synthesis and enzymatic synthesis, and microbial fermentation might be the most potential method. In the paper, the studies on the improvement of 2′-FL yield by microbial modification are reviewed, in order to provide reference for the relevant researchers.

Cite this article

TU Bance , HUANG Guangwen , HUANG Mingzhu , LIU Bin , CHEN Xuelan . Research progress on the production of 2′-fucosyllactose in metabolic engineering[J]. Food and Fermentation Industries, 2024 , 50(2) : 329 -334 . DOI: 10.13995/j.cnki.11-1802/ts.035324

References

[1] BYCH K, MIKŠ M H, JOHANSON T, et al. Production of HMOs using microbial hosts—From cell engineering to large scale production[J]. Current Opinion in Biotechnology, 2019, 56:130-137.
[2] MTONON K, DE MORAIS M B, F V ABRÃO A C, et al. Maternal and infant factors associated with human milk oligosaccharides concentrations according to secretor and lewis phenotypes[J]. Nutrients, 2019, 11(6):1358.
[3] AGOSTON K, HEDEROS M J, BAJZA I, et al. Kilogram scale chemical synthesis of 2′-fucosyllactose[J]. Carbohydrate Research, 2019, 476:71-77.
[4] BODE L. The functional biology of human milk oligosaccharides[J]. Early Human Development, 2015, 91(11):619-622.
[5] WICIŃSKI M, SAWICKA E, GE,BALSKI J, et al. Human milk oligosaccharides: Health benefits, potential applications in infant formulas, and pharmacology[J]. Nutrients, 2020, 12(1):266.
[6] 何竹筠. 双歧杆菌对2′-岩藻糖基乳糖的利用及对小鼠肠道微生态影响的研究[D]. 无锡: 江南大学, 2021.
HE Z J. Utilization of 2′-fucosyl lactose by Bifidobacterium and its effect on intestinal microecology in mice[D].Wuxi: Jiangnan University, 2021.
[7] 陆梦兰, 陈财龙, 徐加英, 等. 2′-岩藻糖基乳糖预防婴幼儿坏死性小肠结肠炎及感染性腹泻的研究进展[J]. 食品工业科技, 2021, 42(23):408-412.
LU M L, CHEN C L, XU J Y, et al. Research progress of 2′-fucosyl lactose in preventing necrotizing enterocolitis and infectious diarrhea in infants[J]. Science and Technology of Food Industry, 2021, 42(23):408-412.
[8] 刘爽, 王津, 邹妍, 等. 2′-岩藻糖基乳糖的功能及其应用现状[J]. 营养学报, 2020, 42(2):187-192.
LIU S, WANG J, ZOU Y, et al. The health benefits of 2′-fucosyllactose and its application in infant formula products[J]. Acta Nutrimenta Sinica, 2020, 42(2):187-192.
[9] 李娜, 徐恺, 李丽, 等. 2′-岩藻糖基乳糖的生理功效以及制备方法研究进展[J]. 食品与发酵工业, 2021, 47(23):265-271.
LI N, XU K, LI L, et al. Recent researches in physiological function and manufacturing method of 2′-fucosyllactose[J]. Food and Fermentation Industries, 2021, 47(23):265-271.
[10] BODE L, CONTRACTOR N, BARILE D, et al. Overcoming the limited availability of human milk oligosaccharides: Challenges and opportunities for research and application[J]. Nutrition Reviews, 2016, 74(10):635-644.
[11] LABRECQUE M P, COLEMAN I M, BROWN L G, et al. Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer[J]. The Journal of Clinical Investigation, 2019, 129(10):4492-4505.
[12] LI C, WU M A, GAO X, et al. Efficient biosynthesis of 2′-fucosyllactose using an in vitro multienzyme cascade[J]. Journal of Agricultural and Food Chemistry, 2020, 68(39):10763-10771.
[13] 史然, 江正强. 2′-岩藻糖基乳糖的酶法合成研究进展和展望[J]. 合成生物学, 2020, 1(4):481-494.
SHI R, JIANG Z Q. Research progress and prospect of enzymatic synthesis of 2′-fucosyl lactose[J]. Synthetic Biology Journal, 2020, 1(4):481-494.
[14] 瓮茹茹, 卫鑫慧, 李浩正, 等. 2′-岩藻糖基乳糖的微生物合成研究进展[J]. 食品科学, 2021, 42(17):248-254.
WENG R R, WEI X H, LI H Z, et al. Progress in microbial synthesis of 2′-fucosyllactose[J]. Food Science, 2021, 42(17):248-254.
[15] 李晨晨. 2′-岩藻糖基乳糖生产菌株的构建及发酵工艺研究[D]. 无锡: 江南大学, 2021.
LI C C. Construction of 2′-fucosyl lactose producing strain and study on fermentation technology[D].Wuxi: Jiangnan University, 2021.
[16] ZHU Y Y, WAN L, LI W, et al. Recent advances on 2′-fucosyllactose: Physiological properties, applications, and production approaches[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(8):2083-2092.
[17] ZHOU W T, JIANG H, WANG L L, et al. Biotechnological production of 2′-fucosyllactose: A prevalent fucosylated human milk oligosaccharide[J]. ACS Synthetic Biology, 2021, 10(3):447-458.
[18] VANDENPLAS Y, DE HALLEUX V, ARCISZEWSKA M, et al. A partly fermented infant formula with postbiotics including 3′-GL, specific oligosaccharides, 2′-FL, and milk fat supports adequate growth, is safe and well-tolerated in healthy term infants: A double-blind, randomised, controlled, multi-country trial[J]. Nutrients, 2020, 12(11):3560.
[19] 刘莹. L-岩藻糖激酶/GDP-岩藻糖焦磷酸化酶的结构与生化研究[D]. 北京: 清华大学, 2018.
LIU Y. Structural and biochemical studies on L-fucose kinase/GDP-fucose pyrophosphorylase[D].Beijing: Tsinghua University, 2018.
[20] LIN L, GONG M Y, LIU Y F, et al. Combinatorial metabolic engineering of Escherichia coli for de novo production of 2′-fucosyllactose[J]. Bioresource Technology, 2022, 351:126949.
[21] SHIN J, JIN Y S, PARK Y C, et al. Enhancing acid tolerance of Escherichia coli via viroporin-mediated export of protons and its application for efficient whole-cell biotransformation[J]. Metabolic Engineering, 2021, 67:277-284.
[22] ZHU Y, LI Y, XU Y, et al. Development of bifunctional biosensors for sensing and dynamic control of glycolysis flux in metabolic engineering[J]. Metabolic Engineering, 2021, 68:142-151.
[23] HUANG D, YANG K X, LIU J, et al. Metabolic engineering of Escherichia coli for the production of 2′-fucosyllactose and 3-fucosyllactose through modular pathway enhancement[J]. Metabolic Engineering, 2017, 41:23-38.
[24] LU M Y, MOSLEH I, ABBASPOURRAD A. Engineered microbial routes for human milk oligosaccharides synthesis[J]. ACS Synthetic Biology, 2021, 10(5):923-938.
[25]JIN-HO SEO S Y-W C, SEONGNAM-SI , GYEONGGI-DO .Method of producing 2′-fucosyllcutose using Corynebacterium Glutamicum [J]. 2018.
[26] DENG J Y, CHEN C M, GU Y, et al. Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis[J]. Metabolic Engineering, 2019, 55:179-190.
[27] DENG J Y, GU L Y, CHEN T C, et al. Engineering the substrate transport and cofactor regeneration systems for enhancing 2′-fucosyllactose synthesis in Bacillus subtilis[J]. ACS Synthetic Biology, 2019, 8(10):2418-2427.
[28] HOLLANDS K, BARON C M, GIBSON K J, et al. Engineering two species of yeast as cell factories for 2′-fucosyllactose[J]. Metabolic Engineering, 2019, 52:232-242.
[29] LI M L, LI C C, HU M M, et al. Metabolic engineering strategies of de novo pathway for enhancing 2′-fucosyllactose synthesis in Escherichia coli[J]. Microbial Biotechnology, 2022, 15(5):1561-1573.
[30] LI W, ZHU Y Y, WAN L, et al. Pathway optimization of 2′-fucosyllactose production in engineered Escherichia coli[J]. Journal of Agricultural and Food Chemistry, 2021, 69(5):1567-1577.
[31] WU Y K, CHEN T C, LIU Y F, et al. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis[J]. Nucleic Acids Research, 2020, 48(2):996-1009.
[32] ZHOU S H, YUAN S F, NAIR P H, et al. Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli[J]. Metabolic Engineering, 2021, 67:41-52.
[33] DINH C V, PRATHER K L J. Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(51):25562-25568.
[34] CHIN Y W, KIM J Y, LEE W H, et al. Enhanced production of 2′-fucosyllactose in engineered Escherichia coli BL21star(DE3) by modulation of lactose metabolism and fucosyltransferase[J]. Journal of Biotechnology, 2015, 210:107-115.
[35] PETSCHACHER B, NIDETZKY B. Biotechnological production of fucosylated human milk oligosaccharides: Prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems[J]. Journal of Biotechnology, 2016, 235:61-83.
[36] WAN L, ZHU Y Y, CHEN G, et al. Efficient production of 2′-fucosyllactose from l-fucose via self-assembling multienzyme complexes in engineered Escherichia coli[J]. ACS Synthetic Biology, 2021, 10(10):2488-2498.
[37] XU W, YAO J, LIU L J, et al. Improving squalene production by enhancing the NADPH/NADP+ ratio, modifying the isoprenoid-feeding module and blocking the menaquinone pathway in Escherichia coli[J]. Biotechnology for Biofuels, 2019, 12:68.
[38] YU W W, JIN K, WU Y K, et al. A pathway independent multi-modular ordered control system based on thermosensors and CRISPRi improves bioproduction in Bacillus subtilis[J]. Nucleic Acids Research, 2022, 50(11):6587-6600.
[39] PARSCHAT K, SCHREIBER S, WARTENBERG D, et al. High-titer De novo biosynthesis of the predominant human milk oligosaccharide 2′-fucosyllactose from sucrose in Escherichia coli[J]. ACS Synthetic Biology, 2020, 9(10):2784-2796.
[40] SEYDAMETOVA E, YU J, SHIN J, et al. Search for bacterial α1, 2-fucosyltransferases for whole-cell biosynthesis of 2′-fucosyllactose in recombinant Escherichia coli[J]. Microbiological Research, 2019, 222:35-42.
[41] LEE J W, KWAK S, LIU J J, et al. Enhanced 2′-fucosyllactose production by engineered Saccharomyces cerevisiae using xylose as a co-substrate[J]. Metabolic Engineering, 2020, 62:322-329.
Outlines

/