[1] WANG J, LI D Q, YE Y X, et al. A fluorescent metal-organic framework for food real-time visual monitoring[J]. Advanced Materials, 2021, 33(15):2008020.
[2] 张焕民. 食品分析及安全检测方法研究[J]. 饮食科学, 2018(4): 9.
ZHANG H M. Study on food analysis and safety detection methods[J]. Diet Science, 2018(4): 9.
[3] 李赟. 浅谈食品检测方法及发展趋势[J]. 食品安全导刊, 2019(30): 61.
LI Y. Discussion on food detection methods and development trend[J]. China Food Safety Magazine, 2019(30): 61.
[4] COLINO C I, LANAO J M, GUTIERREZ-MILLAN C. Recent advances in functionalized nanomaterials for the diagnosis and treatment of bacterial infections[J]. Materials Science and Engineering: C, 2021, 121:111843.
[5] 刘欢. 荧光光谱法在食品品质快速检测中的应用研究与评价[D]. 北京: 中国农业大学, 2017.
LIU H. The rapid determination and evaluation of food quality using fluorescence spectroscopy[D]. Beijing: China Agricultural University, 2017.
[6] 蒋芳. 原子荧光检测技术在食品检测中的应用[J]. 食品安全导刊, 2021(21): 171-173.
JIANG F. Application of atomic fluorescence detection technology in food detection[J]. China Food Safety Magazine, 2021(21): 171-173.
[7] LI L F, LIN D, XU S H, et al. Ratiometric fluorescent sensor for shutter-speedy and ultra-sensitive monitoring of antibiotic utilizing multiple fluorescent devices[J]. Sensors and Actuators B: Chemical, 2022, 363:131819.
[8] 陈曦, 张婷, 孙国栋,等. 食品安全中荧光碳点合成及碳点荧光探针的研究进展[J]. 山东化工, 2022, 51(24): 86-90.
CHEN X, ZHANG T, SUN G D, et al. Research progress of fluorescent carbon dot synthesis and fluorescence sensor in food safety[J]. Shandong Chemical Industry, 2022, 51(24): 86-90.
[9] ZHANG J L, ZHOU M, LI X, et al. Recent advances of fluorescent sensors for bacteria detection-a review[J]. Talanta, 2023, 254:124133.
[10] YUAN D K, WANG P, YANG L J, et al. Carbon “quantum” dots for bioapplications[J]. Experimental Biology and Medicine, 2022, 247(4):300-309.
[11] ZHAO H L, CUI D X, KOU J N, et al. Axially chiral dodecanuclear lanthanide clusters constructed by “bottom-up” self-assembly for enantioselective sensing[J]. Chinese Journal of Chemistry, 2022, 40(10):1165-1170.
[12] 周兆迪. 荧光金属有机配位聚合物的合成及在生物环境污染物检测的研究[D]. 北京: 北京农学院, 2022.
ZHOU Z D. Synthesis of Fluorescent Metal Organic Coordination Polymers and Their Application to Detection of Biological Environmental Pollutants[D]. Beijing: Beijing University Of Agriculture, 2022.
[13] 严静. 基于镧系金属有机配位聚合物的抗生素检测方法研究[D]. 上海: 华东师范大学, 2022.
YAN J. Study on antibiotic detection methods based on lanthanide metal-organic coordination polymers[D]. East China Normal University, 2022.
[14] 宋安敏. 基于双边配体稀土配位聚合物的重金属离子分析方法研究[D]. 南昌: 南昌大学, 2021.
SONG A M. Study on heavy metal ion analysis method based on bilateral ligand rare earth coordination polymer[D].Nanchang: Nanchang University, 2021.
[15] YAO X, CORDOVA K E, ZHANG Y B. Flexible metal-organic frameworks as CO2 adsorbents en route to energy-efficient carbon capture[J]. Small Structures, 2022, 3(5):2270019.
[16] LU Y, JIN X N, LI X, et al. Controllable preparation of superparamagnetic Fe3O4@La(OH)3 inorganic polymer for rapid adsorption and separation of phosphate[J]. Polymers, 2023, 15(1):248.
[17] ZHOU J Y, GENG Y J, WANG Z. Fluorescent molecular probes for imaging and detection of oxidases and peroxidases in biological samples[J]. Methods, 2023, 210:20-35.
[18] SUN L, WANG Q C, MA M, et al. Etching-assisted synthesis of single atom Ni-tailored Pt nanocatalyst enclosed by high-index facets for active and stable oxygen reduction catalysis[J]. Nano Energy, 2022, 103:107800.
[19] JACINTO M J, FERREIRA L F, SILVA V C. Magnetic materials for photocatalytic applications—a review[J]. Journal of Sol-Gel Science and Technology, 2020, 96(1):1-14.
[20] BEREZHNYTSKA O, SAVCHENKO I, ROHOVTSOV O, et al. Luminescent properties of complexes and polymers of Sm (III)[J]. Optical Materials, 2021, 120:111492.
[21] LI Z, LU S, LI X J, et al. Lanthanide upconversion nanoplatforms for advanced bacteria-targeted detection and therapy[J]. Advanced Optical Materials, 2023, 11(11):2202386.
[22] 吕沛瑶. 基于镧系配位聚合物构筑的比率型荧光传感器[D]. 郑州: 郑州大学, 2020.
LYU P Y. Ratio fluorescence sensor based on lanthanide coordination polymer[D].Zhengzhou: Zhengzhou University, 2020.
[23] 李梦梦, 焦静静, 杨仕平. 镧系发光材料用于生物成像的研究进展[J]. 上海师范大学学报(自然科学版), 2021, 50(6):737-744.
LI M M, JIAO J J, YANG S P. Recent advance of lanthanide luminescent materials in biological imaging[J]. Journal of Shanghai Normal University (Natural Sciences), 2021, 50(6):737-744.
[24] XIE X Z, ZHANG Y R, WU Y J, et al. Ligand energy staff gauge for antenna effect study within metal-organic frameworks[J]. The Journal of Physical Chemistry C, 2023, 127(2):1220-1228.
[25] UNGUR L, SZABO B, ALOTHMAN Z A, et al. Mechanisms of luminescence in lanthanide complexes: A crucial role of metal-ligand covalency[J]. Inorganic Chemistry, 2022, 61(16):5972-5976.
[26] ZHU X Y, WANG X H, ZHANG H X, et al. Luminescence lifetime imaging based on lanthanide nanoparticles[J]. Angewandte Chemie (International Ed. in English), 2022, 61(42): e202209378.
[27] 初红涛, 尹杰, 林清, 等. 镧系金属-有机框架材料作为荧光探针的研究进展[J]. 材料导报, 2022, 36(16):209-216.
CHU H T, YIN J, LIN Q, et al. Research progress of lanthanide metal-organic framework materials as fluorescent probes[J]. Materials Reports, 2022, 36(16):209-216.
[28] KANG H, ZHANG Z, ZHOU W. Detection of antibiotics at in situ temperature by Rhodamine B encapsulated in terbium-based metal-organic frameworks[J]. Optical Materials, 2023, 136:113491.
[29] LIU H Y, LI C Y, LI J, et al. Plasmon-enhanced fluorescence resonance energy transfer in different nanostructures and nanomaterials[J]. Applied Materials Today, 2023, 30:101731.
[30] ZHANG G, ZHANG G G, LAI X C, et al. Polyethyleneimine-induced fluorescence enhancement strategy for AIEgen: The mechanism and application[J]. Analytical and Bioanalytical Chemistry, 2023, 415(7):1347-1355.
[31] LIN T R, WU Y R, LI Z H, et al. Visual monitoring of food spoilage based on hydrolysis-induced silver metallization of Au nanorods[J]. Analytical Chemistry, 2016, 88(22):11022-11027.
[32] LORENZO J M, CACHALDORA A, FONSECA S, et al. Production of biogenic amines “in vitro” in relation to the growth phase by Enterobacteriaceae species isolated from traditional sausages[J]. Meat Science, 2010, 86(3):684-691.
[33] ZHOU Y, CHEN G Q, MA C Q, et al. Nitrogen-doped carbon dots with bright fluorescence for highly sensitive detection of Fe3+ in environmental waters[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 293:122414.
[34] LI W Y, ZHU J C, XIE G C, et al. Ratiometric system based on graphene quantum dots and Eu3+ for selective detection of tetracyclines[J]. Analytica Chimica Acta, 2018, 1022:131-137.
[35] ZHANG J Q, LI Z Y, LEI Q, et al. Significantly activated persulfate by novel carbon quantum dots-modified N-BiOCl for complete degradation of bisphenol-a under visible light irradiation[J]. Science of the Total Environment, 2023, 870:161804.
[36] HE X, HAN Y, LUO X L, et al. Terbium (III)-referenced N-doped carbon dots for ratiometric fluorescent sensing of mercury (II) in seafood[J]. Food Chemistry, 2020, 320:126624.
[37] SUH J S, KIM T J. A novel DNA double-strand breaks biosensor based on fluorescence resonance energy transfer[J]. Biomaterials Research, 2023, 27(1):15.
[38] FU Z J, GAO W M, YU T, et al. Study of Bi-directional detection for ascorbic acid and sodium nitrite based on Eu-containing luminescent polyoxometalate[J]. Talanta, 2019, 195:463-471.
[39] HU B, WEI T B, CUI Y J, et al. Hg(II) immobilization and detection using gel formation with tetra-(4-pyridylphenyl) ethylene and an aggregation-induced luminescence effect[J]. Scientific Reports, 2023, 13:2135.
[40] TONG Y J, YU L D, WU L L, et al. Ratiometric detection of Cu2+ using a luminol-Tb-GMP nanoprobe with high sensitivity and selectivity[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7):9333-9341.
[41] 曹琳霞, 王喜云. 食品添加剂对食品安全的影响[J]. 食品安全导刊, 2021(29): 32-34.
CAO L X, WANG X Y. Influence of food additives on food safety China Food Safety Magazine, 2021(29): 32-34.
[42] 林兆盛. 食品添加剂对食品安全的影响[J]. 食品安全导刊, 2023(1): 7-9.
LIN Z S. Effects of food additives on food safety[J]. China Food Safety Magazine, 2023(1): 7-9.
[43] ZENG H H, ZHANG L, RONG L Q, et al. A luminescent lanthanide coordination polymer based on energy transfer from metal to metal for hydrogen peroxide detection[J]. Biosensors and Bioelectronics, 2017, 89:721-727.
[44] LI X Q, WEN Q, CHEN J N, et al. Lanthanide molecular species generated Fe3O4@SiO2-TbDPA nanosphere for the efficient determination of nitrite[J]. Molecules, 2022, 27(14):4431.
[45] 汪海英, 刘剀, 高立娣, 等. 基于镧系金属有机框架材料检测水体中酰胺类除草剂残留的可视化技术研究[J]. 农药学学报, 2019, 21(4):461-467.
WANG H Y, LIU K, GAO L D, et al. Research on visual detection of the residues of amide herbicides in water using lanthanide metal-organic framework[J]. Chinese Journal of Pesticide Science, 2019, 21(4):461-467.
[46] RONG Y W, HASSAN M M, OUYANG Q, et al. Lanthanide ion (Ln3+)-based upconversion sensor for quantification of food contaminants: A review[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(4):3531-3578.
[47] QU F, WANG H, YOU J M. Dual lanthanide-probe based on coordination polymer networks for ratiometric detection of glyphosate in food samples[J]. Food Chemistry, 2020, 323:126815.
[48] LIU P, ZHAO M H, ZHU H J, et al. Dual-mode fluorescence and colorimetric detection of pesticides realized by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles[J]. Journal of Hazardous Materials, 2022, 423:127077.
[49] XU Y Y, ZHANG Z Z, LV P Y, et al. Ratiometric fluorescence sensing of Fe2+/3+ by carbon dots doped lanthanide coordination polymers[J]. Journal of Luminescence, 2019, 205:519-524.
[50] 吴倩, 毕洪梅, 韩晓军. 重金属离子的电化学检测研究进展[J]. 分析化学, 2021, 49(3):330-340.
WU Q, BI H M, HAN X J. Research progress of electrochemical detection of heavy metal ions[J]. Chinese Journal of Analytical Chemistry, 2021, 49(3):330-340.
[51] XU C, HUANG H P, MA J X, et al. Lanthanide(iii) coordination polymers for luminescence detection of Fe(iii) and picric acid[J]. New Journal of Chemistry, 2018, 42(18):15306-15310.
[52] ALEEM A R, LIU J, WANG J, et al. Selective Sensing of Cu2+ and Fe3+ Ions with Vis-Excitation using Fluorescent Eu3+-Induced Aggregates of Polysaccharides (EIAP) in Mammalian Cells and Aqueous Systems[J]. Journal of Hazardous Materials, 2020, 399:122991.
[53] SHU Y, YE Q Y, DAI T, et al. Incorporation of perovskite nanocrystals into lanthanide metal-organic frameworks with enhanced stability for ratiometric and visual sensing of mercury in aqueous solution[J]. Journal of Hazardous Materials, 2022, 430:128360.
[54] AKHGARI F, FATTAHI H, OSKOEI Y M. Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives[J]. Sensors and Actuators B: Chemical, 2015, 221:867-878.
[55] 吴昊, 孙旭飞, 张蕴哲, 等. 基于荧光探针检测食品中赭曲霉毒素A的研究进展[J]. 食品安全质量检测学报, 2022, 13(1): 1-9.
WU H, SUN X F, ZHANG Y Z, et al. Research progress of detection of ochratoxin A in food based on fluorescence sensor[J]. Journal of Food Safety & Quality, 2022, 13(1): 1-9.
[56] 白雪欣. 基于镧系荧光检测食源性蛋白毒素方法的研究[D]. 合肥: 安徽医科大学, 2022.
BAI X X. Study on detection method of food-borne protein toxin based on lanthanide fluorescence[D].Hefei: Anhui Medical University, 2022.
[57] TIAN J Y, WEI W Q, WANG J W, et al. Fluorescence resonance energy transfer aptasensor between nanoceria and graphene quantum dots for the determination of ochratoxin A[J]. Analytica Chimica Acta, 2018, 1000:265-272.
[58] YANG Z F, ZHANG W J, YIN Y Q, et al. Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens[J]. Food Control, 2022, 133:108684.
[59] ZHOU Q J, FANG Y J, LI J Y, et al. A design strategy of dual-ratiomentric optical probe based on europium-doped carbon dots for colorimetric and fluorescent visual detection of anthrax biomarker[J]. Talanta, 2021, 222:121548.
[60] LIU M L, CHEN B B, HE J H, et al. Anthrax biomarker: An ultrasensitive fluorescent ratiometry of dipicolinic acid by using terbium(III)-modified carbon dots[J]. Talanta, 2019, 191:443-448.