[1] MARTÍNEZ-MIRANDA J G, CHAIREZ I, DURÁN-PÁRAMO E.Mannitol production by heterofermentative lactic acid bacteria:A review[J].Applied Biochemistry and Biotechnology, 2022, 194(6):2762-2795.
[2] LIANG P X, CAO M F, LI J, et al.Expanding sugar alcohol industry:Microbial production of sugar alcohols and associated chemocatalytic derivatives[J].Biotechnology Advances, 2023, 64:108105.
[3] ZHANG M, GU L, CHENG C, et al.High-yield production of mannitol by Leuconostoc pseudomesenteroides CTCC G123 from chicory-derived inulin hydrolysate[J].Journal of Industrial Microbiology & Biotechnology, 2017, 44(8):1237-1244.
[4] WEI X L, LI Q Z, HU C C, et al.An ATP-free in vitro synthetic enzymatic biosystem facilitating one-pot stoichiometric conversion of starch to mannitol[J].Applied Microbiology and Biotechnology, 2021, 105(5):1913-1924.
[5] SAHA B C, RACINE F M.Biotechnological production of mannitol and its applications[J].Applied Microbiology and Biotechnology, 2011, 89(4):879-891.
[6] OTGONBAYAR G E, EOM H J, KIM B S, et al.Mannitol production by Leuconostoc citreum KACC 91348P isolated from Kimchi[J].Journal of Microbiology and Biotechnology, 2011, 21(9):968-971.
[7] PENG Y W, JIN H X.Effect of the pat, fk, stpk gene knock-out and mdh gene knock-in on mannitol production in Leuconostoc mesenteroides[J].Journal of Microbiology and Biotechnology, 2018, 28(12):2009-2018.
[8] 金红星, 卢哲, 成文玉.一株高产甘露醇的肠膜明串珠菌突变菌株及其应用方法:中国, CN201711169481[P].2018-04-06.
JIN H X, LU Z, CHENG W Y.Leuconostoc mesenteroides mutant strain with high mannitol yield and application method:China, CN201711169481[P].2018-04-06.
[9] 金红星, 王星, 彭钰玮.在明串珠菌中构建葡萄糖到甘露醇的转化体系[J].食品与发酵工业, 2019, 45(12):96-100;108.
JIN H X, WANG X, PENG Y W.Enhanced biosynthesis of mannitol in Leuconostoc sp.expressed mt1 d-m1p[J].Food and Fermentation Industries, 2019, 45(12):96-100;108.
[10] 金红星, 彭钰玮, 成文玉.一株能利用菊粉的肠膜明串珠菌突变菌株及其应用方法:中国, CN 2019113382168[P].2020-04-24.
JIN H X, PENG Y W, CHENG W Y.Leuconostoc mesenteroides mutant strain capable of utilizing inulin and application method:China, CN 2019113382168[P].2020-04-24.
[11] 金红星, 闫博.一株高产甘露醇的肠膜明串珠菌突变菌株及其应用方法:中国, CN 2018115455031[P].2019-04-09.
JIN H X, YAN B.Leuconostoc mesenteroides mutant strain with high mannitol yield and application method:China, CN 2018115455031[P].2019-04-09.
[12] 金红星, 刘玉秀, 成文玉.一株高产甘露醇的肠膜明串珠菌突变菌株及其应用方法:中国, CN 2018115617407[P].2019-04-09.
JIN H X, LIU Y X, CHENG W Y.Leuconostoc mesenteroides mutant strain with high mannitol yield and application method:China, CN 2018115617407[P].2019-04-09.
[13] CHOI K R, JANG W D, YANG D, et al.Systems metabolic engineering strategies:Integrating systems and synthetic biology with metabolic engineering[J].Trends in Biotechnology, 2019, 37(8):817-837.
[14] SELVARAJOO K.Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology[M].New York:Humana Press, 2023.
[15] 潘珊, 胡孟凯, 潘学玮, 等.基于双酶级联协调表达策略高效催化合成D-甘露醇[J].生物工程学报, 2022, 38(7):2549-2565.
PAN S, HU M K, PAN X W, et al.Efficient biosynthesis of D-mannitol by coordinated expression of a two-enzyme cascade[J].Chinese Journal of Biotechnology, 2022, 38(7):2549-2565.
[16] HANKO E K R, SHERLOCK G, MINTON N P, et al.Biosensor-informed engineering of Cupriavidus necator H16 for autotrophic D-mannitol production[J].Metabolic Engineering, 2022, 72:24-34.
[17] 田云飞, 刘晓莉, 成文玉, 等.α-淀粉酶基因在肠膜明串珠菌基因表达中的应用[J].食品工业科技, 2016, 37(10):203-207.
TIAN Y F, LIU X L, CHENG W Y, et al.Study on application of α-amylase gene in the gene expression of Leuconostoc mesenteroides[J].Science and Technology of Food Industry, 2016, 37(10):203-207.
[18] ZHANG Z, CHENG W Y, JU X Y, et al.The effect of dextransucrase gene inactivation on mannitol production by leuconostoc mesenteroides[J].Indian Journal of Microbiology, 2015, 55(1):35-40.
[19] STEVENS C S, DEVILLEZ R L.Enzymology, with applications to dermatology[J].International Journal of Dermatology, 1980, 19(6):295-309.
[20] 刘玉秀. AcrB基因敲入对明串珠菌产甘露醇的影响[D].天津:河北工业大学, 2019.
LIU Y X.Effect of the AcrB knock-in on mannitol production in Leuconostoc[D].Tianjin:Hebei University of Technology, 2019.
[21] MÄDJE K, SCHMÖLZER K, NIDETZKY B, et al.Host cell and expression engineering for development of an E.coli ketoreductase catalyst:Enhancement of formate dehydrogenase activity for regeneration of NADH[J].Microbial Cell Factories, 2012, 11:7.
[22] RESHAMWALA S M S, PAGAR S K, VELHAL V S, et al.Construction of an efficient Escherichia coli whole-cell biocatalyst for D[J].Journal of Bioscience and Bioengineering, 2014, 118(6):628-631.
[23] COSTAS A M G, WHITE A K, METCALF W W.Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88[J].Journal of Biological Chemistry, 2001, 276(20):17429-17436.
[24] LI J X, HUANG Y Y, CHEN X R, et al.Enhanced production of optical (S)-acetoin by a recombinant Escherichia coli whole-cell biocatalyst with NADH regeneration[J].RSC Advances, 2018, 8(53):30512-30519.
[25] GUI C, CHEN J, XIE Q, et al.CytA, a reductase in the cytorhodin biosynthesis pathway, inactivates anthracycline drugs in Streptomyces[J].Communications Biology, 2019, 2:454.
[26] LEE M J, MANTELL J, HODGSON L, et al.Engineered synthetic scaffolds for organizing proteins within the bacterial cytoplasm[J].Nature Chemical Biology, 2018, 14:142-147.
[27] DELOACHE W C, RUSS Z N, DUEBER J E.Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways[J].Nature Communications, 2016, 7:11152.
[28] TAN D, WU Q, CHEN J C, et al.Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates[J].Metabolic Engineering, 2014, 26:34-47.
[29] JIANG X R, CHEN G Q.Morphology engineering of bacteria for bio-production[J].Biotechnology Advances, 2016, 34(4):435-440.
[30] JIANG X R, YAO Z H, CHEN G Q.Controlling cell volume for efficient PHB production by Halomonas[J].Metabolic Engineering, 2017, 44:30-37.
[31] JENDRESEN C B, NIELSEN A T.Production of zosteric acid and other sulfated phenolic biochemicals in microbial cell factories[J].Nature Communications, 2019, 10(1):4071.
[32] YANG M R, SIMPSON D M, WENNER N, et al.Decoding the stoichiometric composition and organisation of bacterial metabolosomes[J].Nature Communications, 2020, 11(1):1976.
[33] LI H B, MA W J, LYU Y, et al.Glycosylation modification enhances (2 S)-naringenin production in Saccharomyces cerevisiae[J].ACS Synthetic Biology, 2022, 11(7):2339-2347.
[34] LI M, ZHOU P P, CHEN M K, et al.Spatiotemporal regulation of astaxanthin synthesis in S.cerevisiae[J].ACS Synthetic Biology, 2022, 11(8):2636-2649.