The construction of cell factory with high mannitol yield in Leuconostoc

  • LIU Chengchuan ,
  • JIN Hongxing
Expand
  • (School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China)

Received date: 2023-04-02

  Revised date: 2023-05-08

  Online published: 2024-05-09

Abstract

Mannitol is a hexasugar alcohol with many functions, which is widely used in medicine, food, chemical industry and electronics.In order to construct Leuconostoc with high yield of mannitol, the theory of transforming chassis cells into high-yield target product strain—the “source-sink” theory of cell factory was built.Through two homologous recombination, the operon and overlapping gene patterns were broken, and the mannitol efflux pump (MEP) gene sequence and the NADH-regenerating enzyme (formate dehydrogenase) gene sequence were site-direct inserted into the chromosome.When sucrose was 90 g/L, the mannitol yield of the strain that broke the operon and overlapping gene pattern of mep gene was 9.5% higher than that of the original strain (CGMCC1.10327).A strain with a copy of mep gene expression cassette was knocked into the chromosome of the original strain, and the substrate sucrose could be added to 120 g/L, and the output of mannitol reached 55.18 g/L.A strain with a copy of formate dehydrogenase gene expression cassette was knocked into the chromosome of CCTCC M2020762[Δdts1ΔldhΔpat::mdhΔstpk::mdhΔfk::mdhΔaldh::(mtld-mlp) 0385/0386::ldhA-eeΔadh::mepΔldh(0503)::mepΔldh(0373)::mep], and the substrate sucrose could be added to 145 g/L, and the output of mannitol reached 101.6 g/L.Make the cell factory have stronger “source” energy (NADH regeneration, etc.) and larger “sink” capacity (improve MEP activity), and obtain super-high yield of the target product.

Cite this article

LIU Chengchuan , JIN Hongxing . The construction of cell factory with high mannitol yield in Leuconostoc[J]. Food and Fermentation Industries, 2024 , 50(7) : 9 -16 . DOI: 10.13995/j.cnki.11-1802/ts.035669

References

[1] MARTÍNEZ-MIRANDA J G, CHAIREZ I, DURÁN-PÁRAMO E.Mannitol production by heterofermentative lactic acid bacteria:A review[J].Applied Biochemistry and Biotechnology, 2022, 194(6):2762-2795.
[2] LIANG P X, CAO M F, LI J, et al.Expanding sugar alcohol industry:Microbial production of sugar alcohols and associated chemocatalytic derivatives[J].Biotechnology Advances, 2023, 64:108105.
[3] ZHANG M, GU L, CHENG C, et al.High-yield production of mannitol by Leuconostoc pseudomesenteroides CTCC G123 from chicory-derived inulin hydrolysate[J].Journal of Industrial Microbiology & Biotechnology, 2017, 44(8):1237-1244.
[4] WEI X L, LI Q Z, HU C C, et al.An ATP-free in vitro synthetic enzymatic biosystem facilitating one-pot stoichiometric conversion of starch to mannitol[J].Applied Microbiology and Biotechnology, 2021, 105(5):1913-1924.
[5] SAHA B C, RACINE F M.Biotechnological production of mannitol and its applications[J].Applied Microbiology and Biotechnology, 2011, 89(4):879-891.
[6] OTGONBAYAR G E, EOM H J, KIM B S, et al.Mannitol production by Leuconostoc citreum KACC 91348P isolated from Kimchi[J].Journal of Microbiology and Biotechnology, 2011, 21(9):968-971.
[7] PENG Y W, JIN H X.Effect of the pat, fk, stpk gene knock-out and mdh gene knock-in on mannitol production in Leuconostoc mesenteroides[J].Journal of Microbiology and Biotechnology, 2018, 28(12):2009-2018.
[8] 金红星, 卢哲, 成文玉.一株高产甘露醇的肠膜明串珠菌突变菌株及其应用方法:中国, CN201711169481[P].2018-04-06.
JIN H X, LU Z, CHENG W Y.Leuconostoc mesenteroides mutant strain with high mannitol yield and application method:China, CN201711169481[P].2018-04-06.
[9] 金红星, 王星, 彭钰玮.在明串珠菌中构建葡萄糖到甘露醇的转化体系[J].食品与发酵工业, 2019, 45(12):96-100;108.
JIN H X, WANG X, PENG Y W.Enhanced biosynthesis of mannitol in Leuconostoc sp.expressed mt1 d-m1p[J].Food and Fermentation Industries, 2019, 45(12):96-100;108.
[10] 金红星, 彭钰玮, 成文玉.一株能利用菊粉的肠膜明串珠菌突变菌株及其应用方法:中国, CN 2019113382168[P].2020-04-24.
JIN H X, PENG Y W, CHENG W Y.Leuconostoc mesenteroides mutant strain capable of utilizing inulin and application method:China, CN 2019113382168[P].2020-04-24.
[11] 金红星, 闫博.一株高产甘露醇的肠膜明串珠菌突变菌株及其应用方法:中国, CN 2018115455031[P].2019-04-09.
JIN H X, YAN B.Leuconostoc mesenteroides mutant strain with high mannitol yield and application method:China, CN 2018115455031[P].2019-04-09.
[12] 金红星, 刘玉秀, 成文玉.一株高产甘露醇的肠膜明串珠菌突变菌株及其应用方法:中国, CN 2018115617407[P].2019-04-09.
JIN H X, LIU Y X, CHENG W Y.Leuconostoc mesenteroides mutant strain with high mannitol yield and application method:China, CN 2018115617407[P].2019-04-09.
[13] CHOI K R, JANG W D, YANG D, et al.Systems metabolic engineering strategies:Integrating systems and synthetic biology with metabolic engineering[J].Trends in Biotechnology, 2019, 37(8):817-837.
[14] SELVARAJOO K.Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology[M].New York:Humana Press, 2023.
[15] 潘珊, 胡孟凯, 潘学玮, 等.基于双酶级联协调表达策略高效催化合成D-甘露醇[J].生物工程学报, 2022, 38(7):2549-2565.
PAN S, HU M K, PAN X W, et al.Efficient biosynthesis of D-mannitol by coordinated expression of a two-enzyme cascade[J].Chinese Journal of Biotechnology, 2022, 38(7):2549-2565.
[16] HANKO E K R, SHERLOCK G, MINTON N P, et al.Biosensor-informed engineering of Cupriavidus necator H16 for autotrophic D-mannitol production[J].Metabolic Engineering, 2022, 72:24-34.
[17] 田云飞, 刘晓莉, 成文玉, 等.α-淀粉酶基因在肠膜明串珠菌基因表达中的应用[J].食品工业科技, 2016, 37(10):203-207.
TIAN Y F, LIU X L, CHENG W Y, et al.Study on application of α-amylase gene in the gene expression of Leuconostoc mesenteroides[J].Science and Technology of Food Industry, 2016, 37(10):203-207.
[18] ZHANG Z, CHENG W Y, JU X Y, et al.The effect of dextransucrase gene inactivation on mannitol production by leuconostoc mesenteroides[J].Indian Journal of Microbiology, 2015, 55(1):35-40.
[19] STEVENS C S, DEVILLEZ R L.Enzymology, with applications to dermatology[J].International Journal of Dermatology, 1980, 19(6):295-309.
[20] 刘玉秀. AcrB基因敲入对明串珠菌产甘露醇的影响[D].天津:河北工业大学, 2019.
LIU Y X.Effect of the AcrB knock-in on mannitol production in Leuconostoc[D].Tianjin:Hebei University of Technology, 2019.
[21] MÄDJE K, SCHMÖLZER K, NIDETZKY B, et al.Host cell and expression engineering for development of an E.coli ketoreductase catalyst:Enhancement of formate dehydrogenase activity for regeneration of NADH[J].Microbial Cell Factories, 2012, 11:7.
[22] RESHAMWALA S M S, PAGAR S K, VELHAL V S, et al.Construction of an efficient Escherichia coli whole-cell biocatalyst for D[J].Journal of Bioscience and Bioengineering, 2014, 118(6):628-631.
[23] COSTAS A M G, WHITE A K, METCALF W W.Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88[J].Journal of Biological Chemistry, 2001, 276(20):17429-17436.
[24] LI J X, HUANG Y Y, CHEN X R, et al.Enhanced production of optical (S)-acetoin by a recombinant Escherichia coli whole-cell biocatalyst with NADH regeneration[J].RSC Advances, 2018, 8(53):30512-30519.
[25] GUI C, CHEN J, XIE Q, et al.CytA, a reductase in the cytorhodin biosynthesis pathway, inactivates anthracycline drugs in Streptomyces[J].Communications Biology, 2019, 2:454.
[26] LEE M J, MANTELL J, HODGSON L, et al.Engineered synthetic scaffolds for organizing proteins within the bacterial cytoplasm[J].Nature Chemical Biology, 2018, 14:142-147.
[27] DELOACHE W C, RUSS Z N, DUEBER J E.Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways[J].Nature Communications, 2016, 7:11152.
[28] TAN D, WU Q, CHEN J C, et al.Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates[J].Metabolic Engineering, 2014, 26:34-47.
[29] JIANG X R, CHEN G Q.Morphology engineering of bacteria for bio-production[J].Biotechnology Advances, 2016, 34(4):435-440.
[30] JIANG X R, YAO Z H, CHEN G Q.Controlling cell volume for efficient PHB production by Halomonas[J].Metabolic Engineering, 2017, 44:30-37.
[31] JENDRESEN C B, NIELSEN A T.Production of zosteric acid and other sulfated phenolic biochemicals in microbial cell factories[J].Nature Communications, 2019, 10(1):4071.
[32] YANG M R, SIMPSON D M, WENNER N, et al.Decoding the stoichiometric composition and organisation of bacterial metabolosomes[J].Nature Communications, 2020, 11(1):1976.
[33] LI H B, MA W J, LYU Y, et al.Glycosylation modification enhances (2 S)-naringenin production in Saccharomyces cerevisiae[J].ACS Synthetic Biology, 2022, 11(7):2339-2347.
[34] LI M, ZHOU P P, CHEN M K, et al.Spatiotemporal regulation of astaxanthin synthesis in S.cerevisiae[J].ACS Synthetic Biology, 2022, 11(8):2636-2649.
Outlines

/