Research progress on immunoassays for determination of fluoroquinolone residue

  • WANG Xueqing ,
  • CHEN Xiujin ,
  • LI Zhaozhou ,
  • WANG Yao ,
  • AN Biao ,
  • BAI Yubing ,
  • DAI Minghui ,
  • CHEN Jiaqi
Expand
  • 1(College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China)
    2(Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, Luoyang 471000, China)
    3(National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471000, China)

Received date: 2023-03-27

  Revised date: 2023-04-21

  Online published: 2024-05-09

Abstract

Fluoroquinolones have the advantages of a broad spectrum and high efficiency, so they have been widely applied to prevent and treat various infectious diseases in animals.However, the long-term abuse of fluoroquinolones leads to excessive residues of fluoroquinolones in food, which leads to the emergence of drug-resistant pathogens in the body and causes drug-resistance problems in humans.Therefore, it is of great significance to develop a rapid and sensitive method for the detection of fluoroquinolones.Immunoassay has some merits such as high sensitivity and low cost, so it has attracted great attention in the field of food safety.Therefore, this paper summarized antibody production, the principles, characteristics, and applications of various immunoassays for the determination of fluoroquinolones, including enzyme-linked immunosorbent assay, immunochromatography assay, fluoroimmunoassay, and immunosensor.This paper also looked forward to the development trend of immunoassays for fluoroquinolones analysis in the future.

Cite this article

WANG Xueqing , CHEN Xiujin , LI Zhaozhou , WANG Yao , AN Biao , BAI Yubing , DAI Minghui , CHEN Jiaqi . Research progress on immunoassays for determination of fluoroquinolone residue[J]. Food and Fermentation Industries, 2024 , 50(7) : 374 -382 . DOI: 10.13995/j.cnki.11-1802/ts.035641

References

[1] 宋亚宁, 胡超琼, 王冲, 等.核酸适配体生物传感器在食品中氟喹诺酮类兽药残留检测中的应用[J].中国食品学报, 2021, 21(8):409-419.
SONG Y N, HU C Q, WANG C, et al.Application of aptamer biosensor in the determination of fluoroquinolones residues in food[J].Journal of Chinese Institute of Food Science and Technology, 2021, 21(8):409-419.
[2] HU S, HUANG Z, WANG C, et al.Using hapten cross-reactivity to screen heterologous competitive antigens for improving the sensitivity of ELISA[J].Food Chemistry, 2020, 303:125379.
[3] 田雨超, 谷学佳, 薛丽.高效液相色谱法检测猪肉中4种氟喹诺酮类药物残留方法的优化[J].现代畜牧兽医, 2021(10):25-29.
TIAN Y C, GU X J, XUE L.Optimization of the method for the determination of four fluoroquinolones residues in pork by high performance liquid chromatography[J].Modern Journal of Animal Husbandry and Veterinary Medicine, 2021(10):25-29.
[4] 马俊美, 范素芳, 孙磊, 等.超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法测定牛奶中19种喹诺酮类抗生素[J].中国食品学报, 2021, 21(1):309-317.
MA J M, FAN S F, SUN L, et al.Determination of 19 kinds of quinolones in milk by ultra performance liquid chromatography/quadrupole obitrap high resolution mass spectrometry[J].Journal of Chinese Institute of Food Science and Technology, 2021, 21(1):309-317.
[5] DENG Y, GASILOVA N, QIAO L, et al.Highly sensitive detection of five typical fluoroquinolones in low-fat milk by field-enhanced sample injection-based CE in bubble cell capillary[J].Electrophoresis, 2014, 35(23):3355-3362.
[6] TUMINI M, NAGEL O, MOLINA M P, et al.Microbiological assay with Bacillus licheniformis for the easy detection of quinolones in milk[J].International Dairy Journal, 2017, 64:9-13.
[7] PAN Y T, YANG H J, WEN K, et al.Current advances in immunoassays for quinolones in food and environmental samples[J].TrAC Trends in Analytical Chemistry, 2022, 157:116726.
[8] 蔡新发, 张帆, 张家赫, 等.氟喹诺酮类药物免疫分析方法研究进展[J].现代农业科技, 2018(9):266-267;272.
CAI X F, ZHANG F, ZHANG J H, et al.Research progress on immunoassay for determination of fluoroquinolones[J].Modern Agricultural Science and Technology, 2018(9):266-267;272.
[9] 刘向辉, 屈凌波, 孙武勇, 等.洛美沙星人工抗原的合成和多克隆抗体的制备[J].河南工业大学学报(自然科学版), 2009, 30(5):65-68.
LIU X H, QU L B, SUN W Y, et al.Synthesis of artificial antigen and development of multi-clonal antibody against lomefloxacin[J].Journal of Henan University of Technology (Natural Science Edition), 2009, 30(5):65-68.
[10] 李彬彬, 侯玉泽, 邓瑞广, 等.氧氟沙星人工抗原的合成与多克隆抗体的制备[J].食品科技, 2009, 34(9):6-10.
LI B B, HOU Y Z, DENG R G, et al.Synthesis and identification of Ofloxacin artificial antigen[J].Food Science and Technology, 2009, 34(9):6-10.
[11] 汝晓飞, 张伟, 王兴, 等.马波沙星人工抗原的合成及其免疫原性的鉴定[J].畜牧与兽医, 2018, 50(4):66-71.
RU X F, ZHANG W, WANG X, et al.Synthesizing artificial antigen of marbofloxacin and identifying immunogenicity of the antigent[J].Animal Husbandry & Veterinary Medicine, 2018, 50(4):66-71.
[12] 韩振宇. 诺氟沙星抗体的制备及超灵敏检测技术研究[D].呼和浩特:内蒙古医科大学, 2021.
HAN Z Y.Preparation of norfloxacin antibody and study on ultra-sensitive detection technology[D].Hohhot:Inner Mongolia Medical University, 2021.
[13] 李源珍. 喹诺酮类兽药多残留酶联免疫检测方法的研究[D].天津:天津科技大学, 2011.
LI Y Z.Study on enzyme-linked immunosorbent assay for multi-residues of quinolones veterinary drugs[D].Tianjin:Tianjin University of Science & Technology, 2011.
[14] GALVIDIS I A, BURKIN M A.Selective immunodetection of difloxacin in animal muscles and sera:Role of hapten orientation[J].Food Analytical Methods, 2017, 10(6):1755-1764.
[15] 刘劲涛. 氧氟沙星单克隆抗体的制备及免疫层析法的建立[D].南昌:南昌大学, 2021.
LIU J T.Preparation of monoclonal antibody against ofloxacin and establishment of immunochromatography[D].Nanchang:Nanchang University, 2021.
[16] 王雅洁. 氟罗沙星单克隆抗体的制备及荧光免疫分析法的建立[D].郑州:郑州大学, 2020.
WANG Y J.Preparation of monoclonal antibody against fleroxacin and establishment of fluorescence immunoassay[D].Zhengzhou:Zhengzhou University, 2020.
[17] TOCHI B N, PENG J, SONG S S, et al.Production and application of a monoclonal antibody (mAb) against ofloxacin in milk, chicken and pork[J].Food and Agricultural Immunology, 2016, 27(5):643-656.
[18] 汝晓飞. 洛美沙星单克隆抗体的制备及ELISA检测方法的初步建立[D].扬州:扬州大学, 2018.
RU X F.Preparation of monoclonal antibody against lomefloxacin and preliminary establishment of ELISA detection method[D].Yangzhou:Yangzhou University, 2018.
[19] ZHANG X Y, HE K, ZHANG D H, et al.Production and characterization of a monoclonal antibody for Pefloxacin and mechanism study of antibody recognition[J].Bioscience, Biotechnology, and Biochemistry, 2019, 83(4):633-640.
[20] 黄美. 基于单克隆抗体的喹诺酮和磺胺类兽药ELISA研究[D].天津:天津科技大学, 2014.
HUANG M.Study on ELISA of quinolones and sulfonamides veterinary drugs based on monoclonal antibodies[D].Tianjin:Tianjin University of Science & Technology, 2014.
[21] WANG J P, DONG J, DUAN C F, et al.Production and directional evolution of antisarafloxacin ScFv antibody for immunoassay of fluoroquinolones in milk[J].Journal of Agricultural and Food Chemistry, 2016, 64(42):7957-7965.
[22] 康牧旭, 温一菲, 张雪峰, 等.环丙沙星、恩诺沙星、磺胺二甲嘧啶串联单链抗体的制备及融合表达产物抗原特性的分析[J].食品安全质量检测学报, 2021, 12(3):1093-1099.
KANG M X, WEN Y F, ZHANG X F, et al.Preparation of ciprofloxacin, enrofloxacin and sulfadimidine tandem single-chain antibodies and analysis of the antigens characteristics of the fusion expressed products[J].Journal of Food Safety & Quality, 2021, 12(3):1093-1099.
[23] 张运尚, 王方雨, 胡曼, 等.氧氟沙星单链抗体的制备及间接竞争ELISA的建立[J].黑龙江畜牧兽医, 2021(4):116-123;159.
ZHANG Y S, WANG F Y, HU M, et al.Preparation of anti-ofloxacin single chain antibody fragment and establishment of indirect competitive ELISA method[J].Heilongjiang Animal Science and Veterinary Medicine, 2021(4):116-123;159.
[24] MUKUNZI D, SURYOPRABOWO S, SONG S S, et al.Development of an indirect enzyme-linked immunosorbent assay and lateral-flow test strips for pefloxacin and its analogues in chicken muscle samples[J].Food and Agricultural Immunology, 2018, 29(1):484-497.
[25] LI J J, ZHI A M, JIA G C, et al.Development of an ic-ELISA and immunochromatographic strip for detection of sparfloxacin in honey[J].Food and Agricultural Immunology, 2018, 29(1):147-158.
[26] WANG F Y, LI N, ZHANG Y S, et al.Preparation and directed evolution of anti-ciprofloxacin ScFv for immunoassay in animal-derived food[J].Foods, 2021, 10(8):1933.
[27] ZVEREVA E A, SOTNIKOV D V, BELICHENKO K A, et al.Development of immunochromatographic test system for detection of antibiotic clinafloxacin and its application for honey control[J].Applied Biochemistry and Microbiology, 2021, 57(6):778-785.
[28] WANG J Y, ZHANG L, HUANG Y J, et al.Hollow Au-Ag nanoparticles labeled immunochromatography strip for highly sensitive detection of clenbuterol[J].Scientific Reports, 2017, 7:41419.
[29] 赵悦清. 基于碳点分子印迹复合材料对动物源性食品中四环素残留检测的研究[D].天津:天津科技大学, 2019.
ZHAO Y Q.Study on determination of tetracycline residues in animal-derived foods based on carbon dot molecularly imprinted composites[D].Tianjin:Tianjin University of Science & Technology, 2019.
[30] ZONG L J, JIAO Y C, GUO X Y, et al.Paper-based fluorescent immunoassay for highly sensitive and selective detection of norfloxacin in milk at picogram level[J].Talanta, 2019, 195:333-338.
[31] ZHANG B, DU D L, MENG M, et al.A magnetic particle-based competitive enzyme immunoassay for rapid determination of ciprofloxacin:A potential method for the general detection of fluoroquinolones[J].Analytical Letters, 2014, 47(7):1134-1146.
[32] HU G S, GAO S, HAN X, et al.Comparison of immunochromatographic strips using colloidal gold, quantum dots, and upconversion nanoparticles for visual detection of norfloxacin in milk samples[J].Food Analytical Methods, 2020, 13(5):1069-1077.
[33] PENG J, LIU L Q, XU L G, et al.Gold nanoparticle-based paper sensor for ultrasensitive and multiple detection of 32 (fluoro)quinolones by one monoclonal antibody[J].Nano Research, 2017, 10(1):108-120.
[34] HENDRICKSON O D, ZVEREVA E A, SHANIN I A, et al.Development of a multicomponent immunochromatographic test system for the detection of fluoroquinolone and amphenicol antibiotics in dairy products[J].Journal of the Science of Food and Agriculture, 2019, 99(8):3834-3842.
[35] YANG X D, WANG Y B, YANG J F, et al.An immunochromatographic lateral flow strip test for the rapid detection of danofloxacin in milk[J].Food Analytical Methods, 2019, 12(11):2430-2437.
[36] LIU J, WANG B, HUANG H C, et al.Quantitative ciprofloxacin on-site rapid detections using quantum dot microsphere based immunochromatographic test strips[J].Food Chemistry, 2021, 335:127596.
[37] YANG Q B, QI Y H, ZHOU J M, et al.Development of a fluorescent immunochromatographic assay based on quantum dots for the detection of fleroxacin[J].RSC Advances, 2021, 11(36):22005-22013.
[38] 陈俊珺. 基于时间分辨荧光微球免疫层析试纸条对食品中两种抗生素残留的检测方法研究[D].长沙:中南林业科技大学, 2021.
CHEN J J.Development of A time-resolved fluorescent microsphere immunochromatographic strip test for simultaneous detection of two antibiotics in food[D].Changsha:Central South University of Forestry & Technology, 2021.
[39] SHI Q Q, HUANG J, SUN Y N, et al.A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay[J].Microchimica Acta, 2018, 185(2):84.
[40] ZENG H P, CHEN J H, ZHANG C J, et al.Broad-specificity chemiluminescence enzyme immunoassay for (fluoro)quinolones:Hapten design and molecular modeling study of antibody recognition[J].Analytical Chemistry, 2016, 88(7):3909-3916.
[41] 曹敬政, 安静, 蒋蔚, 等.直接竞争化学发光酶免疫法检测氟喹诺酮类药物方法的建立[J].中国动物传染病学报, 2021, 29(5):48-58.
CAO J Z, AN J, JIANG W, et al.Development of a new detection method of ten fluoroquinolones by direct competitive chemiluminescent enzyme immunoassay[J].Chinese Journal of Animal Infectious Diseases, 2021, 29(5):48-58.
[42] PEI Y Q, ZENG L J, WEN C F, et al.Detection of enrofloxacin by flow injection chemiluminescence immunoassay based on cobalt hydroxide nanozyme[J].Microchimica Acta, 2021, 188(6):194.
[43] LIU Y K, WANG Y J, ZHOU J M, et al.Establishment of an immunological detection method of fleroxacin by fluorescence-linked immunosorbent assay[J].Food Additives & Contaminants.Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2021, 38(4):594-601.
[44] HU G S, SHENG W, ZHANG Y, et al.A novel and sensitive fluorescence immunoassay for the detection of fluoroquinolones in animal-derived foods using upconversion nanoparticles as labels[J].Analytical and Bioanalytical Chemistry, 2015, 407(28):8487-8496.
[45] YÁNEZ-JÁCOME G S, AGUILAR-CABALLOS M P, GÓMEZ-HENS A.Luminescent determination of quinolones in milk samples by liquid chromatography/post-column derivatization with terbium oxide nanoparticles[J].Journal of Chromatography.A, 2015, 1405:126-132.
[46] KIM K R, HAN Y D, CHUN H J, et al.Encapsulation-stabilized, europium containing nanoparticle as a probe for time-resolved luminescence detection of cardiac troponin I[J].Biosensors, 2017, 7(4):48.
[47] ZHANG Z, LIU J F, FENG T T, et al.Time-resolved fluoroimmunoassay as an advantageous analytical method for assessing the total concentration and environmental risk of fluoroquinolones in surface waters[J].Environmental Science & Technology, 2013, 47(1):454-462.
[48] CHEN J H, SHANIN I A, LV S W, et al.Heterologous strategy enhancing the sensitivity of the fluorescence polarization immunoassay of clinafloxacin in goat milk[J].Journal of the Science of Food and Agriculture, 2016, 96(4):1341-1346.
[49] SHEN X, CHEN J H, LV S W, et al.Fluorescence polarization immunoassay for determination of enrofloxacin in pork liver and chicken[J].Molecules, 2019, 24(24):4462.
[50] YU X Z, ZHANG X Y, WANG Z H, et al.Universal simultaneous multiplex ELISA of small molecules in milk based on dual luciferases[J].Analytica Chimica Acta, 2018, 1001:125-133.
[51] KERGARAVAT S V, NAGEL O G, ALTHAUS R L, et al.Magneto immunofluorescence assay for quinolone detection in bovine milk[J].Food Analytical Methods, 2020, 13(8):1539-1547.
[52] 陈婉露. 功能纳米材料的制备及用于双氯芬酸钠、苏丹红Ⅰ号和恩诺沙星的电化学发光免疫分析[D].苏州:苏州大学, 2019.
CHEN W L.Preparation of functional nano-materials and their application in electrochemiluminescence immunoassay of diclofenac sodium, Sudan I and enrofloxacin[D].Suzhou:Soochow University, 2019.
[53] LIU B, LI M, ZHAO Y S, et al.A sensitive electrochemical immunosensor based on PAMAM dendrimer-encapsulated Au for detection of norfloxacin in animal-derived foods[J].Sensors, 2018, 18(6):1946.
[54] 仇彩霞, 陈秀金, 付祖耀, 等.基于石墨烯-壳聚糖复合膜修饰电极的麻保沙星电化学免疫传感器的构建[J].食品与发酵工业, 2022, 48(16):50-55.
QIU C X, CHEN X J, FU Z Y, et al.Establishment of an electrochemical immunosensor for marbofloxacin analysis based on graphene oxide-chitosan nanocomposite film modified glass carbon electrode[J].Food and Fermentation Industries, 2022, 48(16):50-55.
[55] HE Z Y, ZANG S, LIU Y J, et al.A multi-walled carbon nanotubes-poly(L-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nanoflower as signal enhancer[J].Biosensors & Bioelectronics, 2015, 73:85-92.
[56] AYMARD C, KANSO H, SERRANO M J, et al.Development of a new dual electrochemical immunosensor for a rapid and sensitive detection of enrofloxacin in meat samples[J].Food Chemistry, 2022, 370:131016.
[57] ZANG S, LIU Y J, LIN M H, et al.A dual amplified electrochemical immunosensor for ofloxacin:Polypyrrole film-Au nanocluster as the matrix and multi-enzyme-antibody functionalized gold nanorod as the label[J].Electrochimica Acta, 2013, 90:246-253.
[58] HU X B, GOUD K Y, KUMAR V S, et al.Disposable electrochemical aptasensor based on carbon nanotubes-V2O5-chitosan nanocomposite for detection of ciprofloxacin[J].Sensors and Actuators B:Chemical, 2018, 268:278-286.
[59] CHEN W L, ZHOU R, YAO X, et al.Sensitive detection of enrofloxacin using an electrochemiluminescence immunosensor based on gold-functionalized C60 and Au@BSA nanoflowers[J].New Journal of Chemistry, 2018, 42(17):14142-14148.
[60] LAMARCA R S, DE FARIA R A D, ZANONI M V B, et al.Simple, fast and environmentally friendly method to determine ciprofloxacin in wastewater samples based on an impedimetric immunosensor[J].RSC Advances, 2020, 10(4):1838-1847.
[61] PAN M F, LI S J, WANG J P, et al.Development and validation of a reproducible and label-free surface plasmon resonance immunosensor for enrofloxacin detection in animal-derived foods[J].Sensors, 2017, 17(9):1984.
[62] SARI E, ÜZEK R, DUMAN M, et al.Detection of ciprofloxacin through surface plasmon resonance nanosensor with specific recognition sites[J].Journal of Biomaterials Science.Polymer Edition, 2018, 29(11):1302-1318.
[63] 李树莹, 田艳, 陈蓓, 等.基于平面波导传感器的恩诺沙星与诺氟沙星同时检测方法[J].环境科学学报, 2018, 38(5):1899-1905.
LI S Y, TIAN Y, CHEN B, et al.Simultaneous detection of enrofloxacin and norfloxacin by planar waveguide immunosensor[J].Acta Scientiae Circumstantiae, 2018, 38(5):1899-1905.
[64] YUAN M F, XIONG Q R, ZHANG G G, et al.Silver nanoprism-based plasmonic ELISA for sensitive detection of fluoroquinolones[J].Journal of Materials Chemistry B, 2020, 8(16):3667-3675.
[65] ZHANG H X, LI B Y, LIU Y P, et al.Immunoassay technology:Research progress in microcystin-LR detection in water samples[J].Journal of Hazardous Materials, 2022, 424(Pt B):127406.
[66] 段宏. 量子点荧光微球在免疫层析方法中的应用研究[D].南昌:南昌大学, 2019.
DUAN H.Study on the application of quantum dot fluorescent microspheres in immunochromatography[D].Nanchang:Nanchang University, 2019.
[67] 戴煌, 黄周梅, 李占明, 等.免疫法在食品黄曲霉毒素检测中的应用[J].中国食品学报, 2021, 21(10):287-304.
DAI H, HUANG Z M, LI Z M, et al.Application of immunoassays in food aflatoxins detection[J].Journal of Chinese Institute of Food Science and Technology, 2021, 21(10):287-304.
[68] 左晓维, 雷琳, 刘河冰, 等.荧光免疫分析法检测食品中黄曲霉毒素的研究进展[J].食品与发酵工业, 2019, 45(1):236-245.
ZUO X W, LEI L, LIU H B, et al.Research progress on detecting aflatoxins in foods using fluorescence immunoassay[J].Food and Fermentation Industries, 2019, 45(1):236-245.
[69] MAJDINASAB M, MITSUBAYASHI K, MARTY J L.Optical and electrochemical sensors and biosensors for the detection of quinolones[J].Trends in Biotechnology, 2019, 37(8):898-915.
Outlines

/