Screening of efficient shrimp shell deproteinizing strains, optimization of enzyme production conditions and enzymatic properties

  • SONG Chaodong ,
  • YIN Doudou ,
  • XIE Chenjie ,
  • YIN Kaibo ,
  • WEI Yuling ,
  • LI Linli ,
  • HUANG Hongzhi ,
  • ZHANG Hongyan ,
  • SHEN Naikun ,
  • JIANG Mingguo
Expand
  • (School of Marine Sciences and Biotechnology, Guangxi Minzu University, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Nanning 530006, China)

Received date: 2023-05-29

  Revised date: 2023-07-11

  Online published: 2024-06-11

Abstract

This study aimed to identify exceptional deproteinization strains, and optimize their fermentation process, examine their enzymatic properties and degradation product composition.Initially, the shrimp shell deproteinization process was optimized using single-factor, Plackett-Burman (PB), and orthogonal optimization experiments.The study also analyzed the enzymatic properties of the secreted crude enzyme solution and the amino acid composition of degradation products.The result for shrimp shell protein degradation by Pseudomonas aeruginosa Gxun-7 was shrimp shell powder 40 g/L, corn pulp 5 g/L, inoculum 1% (V/V), initial pH 7.0, and the optimal fermentation temperature and time were 32 ℃ and 48 h, respectively.Under the optimized conditions, the protease activity reached (617.13±22.11) U/mL, which increased 43.50% compared with the initial strain.The percentage of deproteinized shrimp shells reached (82.61±0.54)%.The protease produced by strain Gxun-7 was an inducible enzyme, which showed high salt resistance.It had maximum activity at 60 ℃ and optimum pH at 7.0, respectively.Most metal ions had no significant effect on the protease activity, except Cu2+ and Al3+ had strong inhibitory effects.Sodium dodecyl sulfonate (SDS) and cetyltrimethylammonium bromide (CTAB) significantly reduced the enzyme activity by more than 40%, while β-mercaptoethanol increased the enzyme activity by 468%.A total of 17 amino acids were detected in the degradation solution, with concentrations up to 1 856.14 mg/L.P.aeruginosa Gxun-7 efficiently degrades proteins in shrimp shells, generating proteases with exceptional stability and abundant types and contents of amino acids in the degradation liquid.This research provides a theoretical foundation for developing shrimp shell protein fermentation technology.

Cite this article

SONG Chaodong , YIN Doudou , XIE Chenjie , YIN Kaibo , WEI Yuling , LI Linli , HUANG Hongzhi , ZHANG Hongyan , SHEN Naikun , JIANG Mingguo . Screening of efficient shrimp shell deproteinizing strains, optimization of enzyme production conditions and enzymatic properties[J]. Food and Fermentation Industries, 2024 , 50(10) : 103 -111 . DOI: 10.13995/j.cnki.11-1802/ts.036282

References

[1] 高秀君, 闫培生.海产品加工废弃物再利用研究进展[J].生物技术进展, 2014, 4(5):346-354.
GAO X J, YAN P S.Progress of reutilization of seafood processing waste[J].Current Biotechnology, 2014, 4(5):346-354.
[2] DENG J J, MAO H H, FANG W, et al.Enzymatic conversion and recovery of protein, chitin, and astaxanthin from shrimp shell waste[J].Journal of Cleaner Production, 2020, 271:122655.
[3] XIE J W, XIE W C, YU J, et al.Extraction of chitin from shrimp shell by successive Two-Step fermentation of Exiguobacterium profundum and Lactobacillus acidophilus[J].Frontiers in Microbiology, 2021, 12:677126.
[4] RAKSHIT S, MONDAL S, PAL K, et al.Extraction of chitin from Litopenaeus vannamei shell and its subsequent characterization:An approach of waste valorization through microbial bioprocessing[J].Bioprocess and Biosystems Engineering, 2021, 44(9):1943-1956.
[5] 辛荣玉. 基于微生物法建立虾壳中甲壳素绿色制备技术研究[D].青岛:青岛科技大学, 2020.
XIN R Y.A study on green technologies for chitin preparation from shrimp shells based on microbiological methods[D].Qingdao:Qingdao University of Science and Technology, 2020.
[6] FLORES-ALBINO B, ARIAS L, GÓMEZ J,et al.Chitin and L(+)-lactic acid production from crab (Callinectes bellicosus) wastes by fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source[J].Bioprocess and Biosystems Engineering, 2012, 35(7):1193-1200.
[7] JUNG W J, JO G H, KUK J H, et al.Production of chitin from red crab shell waste by successive fermentation with Lactobacillus paracasei KCTC-3074 and Serratia marcescens FS-3[J].Carbohydrate Polymers, 2007, 68(4):746-750.
[8] ZHANG Q, WANG L Y, LIU S G, et al.Establishment of successive co-fermentation by Bacillus subtilis and Acetobacter pasteurianus for extracting chitin from shrimp shells[J].Carbohydrate Polymers, 2021, 258:117720.
[9] 杨梦莹, 庞坤容, 潘江欣, 等.一株可高效降解羽毛的铜绿假单胞菌的分离、鉴定、产酶条件优化及其酶活研究[J].微生物学报, 2022,62(3):968-981.
YANG M Y, PANG K R, PAN J X, et al.Isolation, identification, optimization of enzyme-producing conditions and enzymatic activity of a feather-degradable Pseudomonas aeruginosa strain[J].Acta Microbiologica Sinica, 2022, 62(3):968-981.
[10] 张妮, 张红岩, 杨梦莹, 等.一株海洋来源高效产角蛋白酶菌株的筛选、鉴定及其酶学性质研究[J].食品与发酵工业, 2020, 46(18):98-104.
ZHANG N, ZHANG H Y, YANG M Y, et al.Isolation and identification of a highly efficient keratinase producing strain from marine environment and its enzymatic properties[J].Food and Fermentation Industries, 2020, 46(18):98-104.
[11] 赵雨, 郭建华, 张春枝.蜡状芽孢杆菌ZY12产磷脂酶D的影响因素[J].食品与发酵工业, 2021, 47(9):57-62.
ZHAO Y,GUO J H,ZHANG C Z.Factors influencing phospholipase D production by Bacillus cereus ZY12[J].Food and Fermentation Industries, 2021, 47(9):57-62.
[12] LIU Y L, XING R E, YANG H Y, LIU S, et al.Chitin extraction from shrimp (Litopenaeus vannamei) shells by successive two-step fermentation with Lactobacillus rhamnoides and Bacillus amyloliquefaciens[J].International Journal of Biological Macromolecules, 2020, 148:424-433.
[13] 张巧, 黄兴, 李永成.产蛋白酶菌株的鉴定及其对虾壳的脱蛋白研究[J].中国酿造, 2020, 39(9):131-135.
ZHANG Q, HUANG X, LI Y C.Identification of a protease-producing strain and deproteinization on shrimp shell[J].China Brewing, 2020, 39(9):131-135.
[14] CAHYANINGTYAS H A A, SUYOTHA W, CHEIRSILP B, et al.Optimization of protease production by Bacillus cereus HMRSC30 for simultaneous extraction of chitin from shrimp shell with value-added recovered products[J].Environmental Science and Pollution International, 2022, 29(15):22163-22178.
[15] 孙艺轩, 郑国栋, 林剑.芽孢杆菌NCB-01胞外蛋白酶酶学特性的初步研究[J].中国酿造, 2020, 39(8):128-133.
SUN Y X, ZHENG G D, LIN J.Preliminary study of enzymatic characterization of extracellular protease from Bacillus NCB-01[J].China Brewing, 2020, 39(8):128-133.
[16] 舒会. 深海铜绿假单胞菌的产酶特性及弹性蛋白酶应用研究[D].广州:华南理工大学, 2016.
SHU H.Enzymatic characterization of deep-sea strain Pseudomonas aeruginosa and hydrolysis application of elastase[D].Guangzhou:South China University of Technology, 2016.
[17] 周婉婷, 侯宏伟, 贺瑞琦, 等.豆豉中产蛋白酶菌株的酶学性质及风味酶基因挖掘[J].食品与发酵工业, 2022, 48(24):181-193.
ZHOU W T, HOU H W, HE R Q, et al.Enzymatic properties of protease-producing strains in Douchi and mining of flavor enzyme genes[J].Food and Fermentation Industries, 2022, 48(24):181-193.
[18] 冯菲, 权淑静, 刘丽, 等.高产蛋白酶菌株的分离、鉴定及酶学性质研究[J].中国酿造, 2021, 40(7):148-152.
FENG F, QUAN S J, LIU L, et al.Isolation, identification and enzymatic properties of a high-yield protease strain[J].China Brewing, 2021, 40(7):148-152.
[19] 高岩, 王景会, 李玉秋, 等.枯草芽孢杆菌凝乳酶的酶学性质[J].吉林农业大学学报, 2012, 34(4):385-390.
GAO Y, WANG J H, LI Y Q, et al.Enzymological characteristics of chymosin produced by Bacillus subtilis[J].Journal of Jilin Agricultural University, 2012, 34(4):385-390.
[20] 王朋辉, 王伟贤, 杨涛, 等.碱性蛋白酶洗涤性能的影响因素[J].日用化学工业, 2021, 51(11):1109-1117.
WANG P H, WANG W X, YANG T, et al.Influencing factors on washing performance of alkaline protease in liquid detergent[J].China Surfactant Detergent&Cosmetics, 2021, 51(11):1109-1117.
[21] WANG S L, CHAO C H, LIANG T W, et al.Purification and characterization of protease and chitinase from Bacillus cereus TKU006 and conversion of marine wastes by these enzymes[J].Marine Biotechnology, 2009, 11(3):334-344.
[22] HOMAEI A, IZADPA NAH QESHMI F.Purification and characterization of a robust thermostable protease isolated from Bacillus subtilis strain HR02 as an extremozyme[J].Journal of Applied Microbiology, 2022, 133(5):2779-2789.
[23] 孙明远. 食品营养学[M].北京:科学出版社, 2006.
SUN M Y.Food Nutriology[M].Beijing:Science Press, 2006.
[24] 赵黎明, 夏文水.虾蟹壳生产甲壳素废碱液的成分分析[J].食品工业科技, 2009, 30(8):75-77.
ZHAO L M, XIA W S.Composition analysis of alkali wastewater from chitin processing[J].Science and Technology of Food Industry, 2009, 30(8):75-77.
[25] 聂芙蓉, 郭良兴, 李梦云, 等.虾壳粉的营养价值评价及虾青素闪提工艺参数研究[J].现代牧业, 2021, 5(2):5-10.
NIE F R, GUO L X, LI M Y, et al. Evaluation of nutritional value of shrimp shell powder and study on technological parameters of astaxanthin flash extraction[J].Modern Animal Husbandry, 2021,5(2):5-10.
[26] BARON R, SOCOL M, KAAS R, et al.Elements for optimizing a one-step enzymatic bio-refinery process of shrimp cuticles:Focus on enzymatic proteolysis screening[J].Biotechnology Reports, 2017, 15:70-74.
Outlines

/