[1] DWIVEDI H P, JAYKUS L A.Detection of pathogens in foods:The current state-of-the-art and future directions[J].Critical Reviews in Microbiology, 2011, 37(1):40-63.
[2] OLIVER S P, JAYARAO B M, ALMEIDA R A.Foodborne pathogens in milk and the dairy farm environment:Food safety and public health implications[J].Foodborne Pathogens and Disease, 2005, 2(2):115-129.
[3] DAVEY H M.Life, death, and in-between:Meanings and methods in microbiology[J].Applied and Environmental Microbiology, 2011, 77(16):5571-5576.
[4] ZHAO Y N, ZENG D X, YAN C, et al.Rapid and accurate detection of Escherichia coli O157∶H7 in beef using microfluidic wax-printed paper-based ELISA[J].The Analyst, 2020, 145(8):3106-3115.
[5] VERDOODT N, BASSO C R, ROSSI B F, et al.Development of a rapid and sensitive immunosensor for the detection of bacteria[J].Food Chemistry, 2017, 221:1792-1796.
[6] DI FEBO T, SCHIRONE M, VISCIANO P, et al.Development of a capture ELISA for rapid detection of Salmonella enterica in food samples[J].Food Analytical Methods, 2019, 12(2):322-330.
[7] KELL D B, KAPRELYANTS A S, WEICHART D H, et al.Viability and activity in readily culturable bacteria:A review and discussion of the practical issues[J].Antonie Van Leeuwenhoek, 1998, 73(2):169-187.
[8] ESPINA L, GARCÍA-GONZALO D, PAGÁN R.Detection of thermal sublethal injury in Escherichia coli via the selective medium plating technique:Mechanisms and improvements[J].Frontiers in Microbiology, 2016, 7:1376.
[9] WESCHE A M, GURTLER J B, MARKS B P, et al.Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens[J].Journal of Food Protection, 2009, 72(5):1121-1138.
[10] AYRAPETYAN M, OLIVER J D.The viable but non-culturable state and its relevance in food safety[J].Current Opinion in Food Science, 2016, 8:127-133.
[11] RAMAMURTHY T, GHOSH A, PAZHANI G P, et al.Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria[J].Frontiers in Public Health, 2014, 2:103.
[12] DING T, LIAO X Y, FENG J S.Stress Responses of Foodborne Pathogens[M].Cham:Springer Nature, 2022.
[13] HOLFORD T R J, DAVIS F, HIGSON S P J.Recent trends in antibody based sensors[J].Biosensors and Bioelectronics, 2012, 34(1):12-24.
[14] PANDEY S.Hybridoma technique for production of monoclonal antibodies[J].International Journal of Pharmaceutical Sciences Review and Research, 2010, 1(2):88-94.
[15] 赵欣悦, 杨晓梅, 孙树阳, 等.纳米抗体的特性及其在免疫检测中的研究进展[J].生命科学, 2021, 33(4):472-478.
ZHAO X Y, YANG X M, SUN S Y, et al.Characteristics of nanobody and its research advances in immunoassay[J].Chinese Bulletin of Life Sciences, 2021, 33(4):472-478.
[16] 陈奇. 单核细胞增生性李斯特菌单克隆抗体、多克隆抗体及单域重链抗体的制备[D].南昌:南昌大学, 2014.
CHEN Q.Preparation of anti-Listeria monocytogenes monoclonal antibody, polyclonal antibodies and single-domain heavy chain antibody[D].Nanchang:Nanchang University, 2014.
[17] BYRNE B, STACK E, GILMARTIN N, et al.Antibody-based sensors:Principles, problems and potential for detection of pathogens and associated toxins[J].Sensors, 2009, 9(6):4407-4445.
[18] HOLLIGER P, HUDSON P J.Engineered antibody fragments and the rise of single domains[J].Nature Biotechnology, 2005, 23(9):1126-1136.
[19] HAMERS-CASTERMAN C, ATARHOUCH T, MUYLDERMANS S, et al.Naturally occurring antibodies devoid of light chains[J].Nature, 1993, 363(6428):446-448.
[20] MUYLDERMANS S.Nanobodies:Natural single-domain antibodies[J].Annual Review of Biochemistry, 2013, 82:775-797.
[21] 严昊, 冯建远, 张子仪, 等.纳米抗体的制备与临床应用研究进展[J].中国畜牧兽医, 2021, 48(2):685-694.
YAN H, FENG J Y, ZHANG Z Y, et al.Progress in preparation and clinical application of nanobody[J].China Animal Husbandry & Veterinary Medicine, 2021, 48(2):685-694.
[22] LI C, TANG Z R, HU Z X, et al.Natural single-domain antibody-nanobody:A novel concept in the antibody field[J].Journal of Biomedical Nanotechnology, 2018, 14(1):1-19.
[23] CHUNGLOK W, WURAGIL D K, OAEW S, et al.Immunoassay based on carbon nanotubes-enhanced ELISA for Salmonella enterica serovar Typhimurium[J].Biosensors and Bioelectronics, 2011, 26(8):3584-3589.
[24] HU Y Z, SUN Y, GU J X, et al.Selection of specific nanobodies to develop an immuno-assay detecting Staphylococcus aureus in milk[J].Food Chemistry, 2021, 353:129481.
[25] ZHANG C, LIU Z L, BAI M F, et al.An ultrasensitive sandwich chemiluminescent enzyme immunoassay based on phage-mediated double-nanobody for detection of Salmonella Typhimurium in food[J].Sensors and Actuators B:Chemical, 2022, 352:131058.
[26] WEI T X, DU D, ZHU M J, et al.An Improved ultrasensitive enzyme-linked immunosorbent assay using Hydrangea-like antibody-enzyme-inorganic three-in-one nanocomposites[J].ACS Applied Materials & Interfaces, 2016, 8(10):6329-6335.
[27] CHEN R, HUANG X L, XU H Y, et al.Plasmonic enzyme-linked immunosorbent assay using nanospherical brushes as a catalase container for colorimetric detection of ultralow concentrations of Listeria monocytogenes[J].ACS Applied Materials & Interfaces, 2015, 7(51):28632-28639.
[28] 范莉. 酶联免疫吸附法在食品检验中的实践应用研究[J].食品安全导刊, 2021(27):135-136.
FAN L.Study on the practical application of enzyme-linked immunosorbent assay in food inspection[J].China Food Safety Magazine, 2021(27):135-136.
[29] GONDHALEKAR C, BIELA E, RAJWA B, et al.Detection of E.coli labeled with metal-conjugated antibodies using lateral-flow assay and laser-induced breakdown spectroscopy[J].Analytical and Bioanalytical Chemistry, 2020, 412(6):1291-1301.
[30] ZENG L, GUO L L, WANG Z X, et al.Gold nanoparticle-based immunochromatographic assay for detection Pseudomonas aeruginosa in water and food samples[J].Food Chemistry:X, 2021, 9:100117.
[31] DUAN M L, HUANG Y M, WU S S, et al.Rapid and sensitive detection of Salmonella enteritidis by a pre-concentrated immunochromatographic assay in a large-volume sample system[J].RSC Advances, 2017, 7(87):55141-55147.
[32] ZHU C J, ZHAO G Y, DOU W C.Core-shell red silica nanoparticles based immunochromatographic assay for detection of Escherichia coli O157∶H7[J].Analytica Chimica Acta, 2018, 1038:97-104.
[33] XIE Q Y, WU Y H, XIONG Q R, et al.Advantages of fluorescent microspheres compared with colloidal gold as a label in immunochromatographic lateral flow assays[J].Biosensors and Bioelectronics, 2014, 54:262-265.
[34] ZHANG B, YANG X S, LIU X X, et al.Polyethyleneimine-interlayered silica-core quantum dot-shell nanocomposites for sensitive detection of Salmonella typhimurium via a lateral flow immunoassay[J].RSC Advances, 2020, 10(5):2483-2489.
[35] HAO M, ZHANG P P, LI B S, et al.Development and evaluation of an up-converting phosphor technology-based lateral flow assay for the rapid, simultaneous detection of Vibrio cholerae serogroups O1 and O139[J].PLoS One, 2017, 12(6):e0179937.
[36] WANG Q, LONG M Y, LV C Y, et al.Lanthanide-labeled fluorescent-nanoparticle immunochromatographic strips enable rapid and quantitative detection of Escherichia coli O157∶H7 in food samples[J].Food Control, 2020, 109:106894.
[37] CHO I H, IRUDAYARAJ J.Lateral-flow enzyme immunoconcentration for rapid detection of Listeria monocytogenes[J].Analytical and Bioanalytical Chemistry, 2013, 405(10):3313-3319.
[38] NGOM B, GUO Y C, WANG X L, et al.Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants:A review[J].Analytical and Bioanalytical Chemistry, 2010, 397(3):1113-1135.
[39] ZENG H J, GUO W B, LIANG B B, et al.Self-paired monoclonal antibody lateral flow immunoassay strip for rapid detection of Acidovorax avenae subsp.citrulli[J].Analytical and Bioanalytical Chemistry, 2016, 408(22):6071-6078.
[40] BHARDWAJ N, BHARDWAJ S K, BHATT D, et al.Highly sensitive optical biosensing of Staphylococcus aureus with an antibody/metal-organic framework bioconjugate[J].Analytical Methods, 2019, 11(7):917-923.
[41] CHEN A L, YANG S M.Replacing antibodies with aptamers in lateral flow immunoassay[J].Biosensors and Bioelectronics, 2015, 71:230-242.
[42] HASSAN A H A, BERGUA J F, MORALES-NARVáEZ E, et al.Validity of a single antibody-based lateral flow immunoassay depending on graphene oxide for highly sensitive determination of E.coli O157∶H7 in minced beef and river water[J].Food Chemistry, 2019, 297:124965.
[43] SONG C M, LI J W, LIU J X, et al.Simple sensitive rapid detection of Escherichia coli O157∶H7 in food samples by label-free immunofluorescence strip sensor[J].Talanta, 2016, 156:42-47.
[44] LIU C, FANG S Q, TIAN Y C, et al.An aggregation-induced emission material labeling antigen-based lateral flow immunoassay strip for rapid detection of Escherichia coli O157:H7[J].SLAS Technology, 2021, 26(4):377-383.
[45] BU T, HUANG Q, YAN L Z, et al.Applicability of biological dye tracer in strip biosensor for ultrasensitive detection of pathogenic bacteria[J].Food Chemistry, 2019, 274:816-821.
[46] BU T, WANG J L, HUANG L J, et al.New functional tracer-two-dimensional nanosheet-based immunochromatographic assay for Salmonella enteritidis detection[J].Journal of Agricultural and Food Chemistry, 2019, 67(23):6642-6649.
[47] STEVENS K A, JAYKUS L A.Bacterial separation and concentration from complex sample matrices:A review[J].Critical Reviews in Microbiology, 2004, 30(1):7-24.
[48] KIM T H, PARK J, KIM C J, et al.Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens[J].Analytical Chemistry, 2014, 86(8):3841-3848.
[49] DAVIS R, IRUDAYARAJ J, REUHS B L, et al.Detection of E.coli O157∶H7 from ground beef using Fourier transform infrared (FT-IR) spectroscopy and chemometrics[J].Journal of Food Science, 2010, 75(6):M340-M346.
[50] CHAI Z L, BI H Y.Capture and identification of bacteria from fish muscle based on immunomagnetic beads and MALDI-TOF MS[J].Food Chemistry:X, 2022, 13:100225.
[51] SHEN Z Q, WANG J F, QIU Z G, et al.QCM immunosensor detection of Escherichia coli O157∶H7 based on beacon immunomagnetic nanoparticles and catalytic growth of colloidal gold[J].Biosensors and Bioelectronics, 2011, 26(7):3376-3381.
[52] ESTEBAN-FERNÁNDEZ DE ÁVILA B, PEDRERO M, CAMPUZANO S, et al.Sensitive and rapid amperometric magnetoimmunosensor for the determination of Staphylococcus aureus[J].Analytical and Bioanalytical Chemistry, 2012, 403(4):917-925.
[53] WANG S J, XU D P, DING C C, et al.A colorimetric immunoassay for determination of Escherichia coli O157∶H7 based on oxidase-like activity of cobalt-based zeolitic imidazolate framework[J].Mikrochimica Acta, 2020, 187(9):506.
[54] ZHU P X, SHELTON D R, LI S H, et al.Detection of E.coli O157∶H7 by immunomagnetic separation coupled with fluorescence immunoassay[J].Biosensors and Bioelectronics, 2011, 30(1):337-341.
[55] ZHANG Y, TAN C, FEI R H, et al.Sensitive chemiluminescence immunoassay for E.coli O157∶H7 detection with signal dual-amplification using glucose oxidase and laccase[J].Analytical Chemistry, 2014, 86(2):1115-1122.
[56] BU S J, WANG K Y, WANG C Y, et al.Immunoassay for foodborne pathogenic bacteria using magnetic composites Ab@Fe3O4, signal composites Ap@PtNp, and thermometer readings[J].Mikrochimica Acta, 2020, 187(12):679.
[57] BARIZUDDIN S, BALAKRISHNAN B, STRINGER R C, et al.Highly specific and rapid immuno-fluorescent visualization and detection of E.coli O104:H4 with protein-a coated magnetic beads based LST-MUG assay[J].Journal of Microbiological Methods, 2015, 115:27-33.
[58] 李孝权, 王鸣, 易鸿, 等.非可培养状态霍乱弧菌的间接免疫荧光检测[J].中国公共卫生, 2005, 21(12):1437-1438.
LI X Q, WANG M, YI H, et al.Detection of Vibrio cholerae in nonculturable state by indirect immunofluorescent assay[J].China Public Health, 2005, 21(12):1437-1438.
[59] BALAKRISHNAN B, BARIZUDDIN S, WULIJI T, et al.A rapid and highly specific immunofluorescence method to detect Escherichia coli O157:H7 in infected meat samples[J].International Journal of Food Microbiology, 2016, 231:54-62.
[60] CHO I H, MAUER L, IRUDAYARAJ J.In-situ fluorescent immunomagnetic multiplex detection of foodborne pathogens in very low numbers[J].Biosensors and Bioelectronics, 2014, 57:143-148.
[61] 章钢刚, 赖卫华.食源性致病菌免疫学检测方法研究进展[J].食品安全质量检测学报, 2015, 6(9):3414-3419.
ZHANG G G, LAI W H.Research progress of immunological detection methods of foodborne pathogen[J].Journal of Food Safety & Quality, 2015, 6(9):3414-3419.
[62] XIONG J, WANG W W, ZHOU Y L, et al.Ultra-sensitive chemiluminescent detection of Staphylococcus aureus based on competitive binding of Staphylococcus protein A-modified magnetic beads to immunoglobulin G[J].Microchimica Acta, 2016, 183(4):1507-1512.
[63] YANG S J, OUYANG H, SU X X, et al.Dual-recognition detection of Staphylococcus aureus using vancomycin-functionalized magnetic beads as concentration carriers[J].Biosensors and Bioelectronics, 2016, 78:174-180.
[64] MAGLIULO M, SIMONI P, GUARDIGLI M, et al.A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria[J].Journal of Agricultural and Food Chemistry, 2007, 55(13):4933-4939.
[65] LIU D Q, LI T C, HUANG W C, et al.Electrochemiluminescent detection of Escherichia coli O157∶H7 based on Ru(bpy)32+/ZnO nanorod arrays[J].Nanotechnology, 2019, 30(2):025501.
[66] WEI H, WANG E K.Electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its applications in bioanalysis:A review[J].Luminescence, 2011, 26(2):77-85.
[67] LI S, LIU J L, CHEN Z T, et al.Electrogenerated chemiluminescence on smartphone with graphene quantum dots nanocomposites for Escherichia coli detection[J].Sensors and Actuators B:Chemical, 2019, 297:126811.
[68] LIN J H, JU H X.Electrochemical and chemiluminescent immunosensors for tumor markers[J].Biosensors and Bioelectronics, 2005, 20(8):1461-1470.
[69] HUANG H, LIU M H, WANG X S, et al.Label-free 3D Ag nanoflower-based electrochemical immunosensor for the detection of Escherichia coli O157:H7 pathogens[J].Nanoscale Research Letters, 2016, 11(1):507.
[70] FELIX F S, ANGNES L.Electrochemical immunosensors-A powerful tool for analytical applications[J].Biosensors and Bioelectronic, 2018, 102:470-478.
[71] LI Y, CHENG P, GONG J H, et al.Amperometric immunosensor for the detection of Escherichia coli O157∶H7 in food specimens[J].Analytical Biochemistry, 2012, 421(1):227-233.
[72] ROUSHANI M, RAHMATI Z, GOLCHIN M, et al.Electrochemical immunosensor for determination of Staphylococcus aureus bacteria by IgY immobilized on glassy carbon electrode with electrodeposited gold nanoparticles[J].Mikrochimica Acta, 2020, 187(10):567.
[73] MUTLAQ S, ALBISS B, AL-NABULSI A A, et al.Conductometric immunosensor for Escherichia coli O157∶H7 detection based on polyaniline/zinc oxide (PANI/ZnO) nanocomposite[J].Polymers, 2021, 13(19):3288.
[74] SILVA N F D, ALMEIDA C M R, MAGALHÃES J M C S, et al.Development of a disposable paper-based potentiometric immunosensor for real-time detection of a foodborne pathogen[J].Biosensors and Bioelectronics, 2019, 141:111317.
[75] CHORTI P, KAZI A P, HAQUE A M J, et al.Flow-through electrochemical immunoassay for targeted bacteria detection[J].Sensors and Actuators B:Chemical, 2022, 351:130965.
[76] FARKA Z, JUÍK T, PASTUCHA M, et al.Enzymatic precipitation enhanced surface plasmon resonance immunosensor for the detection of Salmonella in powdered milk[J].Analytical Chemistry, 2016, 88(23):11830-11836.
[77] YANG Y, LI G L, WANG P X, et al.Highly sensitive multiplex detection of foodborne pathogens using a SERS immunosensor combined with novel covalent organic frameworks based biologic interference-free Raman tags[J].Talanta, 2022, 243:123369.
[78] WANG P, YU G G, WEI J, et al.A single thiolated-phage displayed nanobody-based biosensor for label-free detection of foodborne pathogen[J].Journal of Hazardous Materials, 2023, 443(Pt A):130157.
[79] 董永贞, 陈瑞, 吴紫荆, 等.铂壳金核纳米酶介导的磁弛豫免疫传感器快速检测食源性沙门氏菌[J].食品科学, 2023, 44(4):337-343.
DONG Y Z, CHEN R, WU Z J, et al.Gold Core@Platinum shell-nanozyme-mediated magnetic relaxation immunosensor for the rapid detection of foodborne Salmonella[J].Food Science, 2023, 44(4):337-343.