Research progress on application of immunoassays in foodborne pathogens

  • SU Na ,
  • MING Liang ,
  • HE Jing ,
  • JI Rimutu ,
  • Tuyatsetseg Jambal ,
  • Dulguun Dorjgotov ,
  • YI Li
Expand
  • 1(Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agriculture University, Hohhot 010018, China)
    2(Inner Mongolia China-Kazakhstan Camel Research Institute, Alxa 737300, China)
    3(China-Mongolia Joint Laboratory for Biomacromolecule Research, Ulaanbaatar 15141, Mongolia)
    4(Mongolian University of Science and Technology, Ulaanbaatar 15141, Mongolia)

Received date: 2023-05-15

  Revised date: 2023-08-03

  Online published: 2024-07-11

Abstract

Food safety has become an important public health issue, rapid and accurate monitoring and detection of foodborne pathogens is one of the most effective ways to control and prevent human foodborne diseases.The complexity of food matrices, the diversity of bacteria and their different growth and replication characteristics pose a major challenge for the detection of foodborne pathogens.Traditional microbial detection methods are time-consuming and laborious, and cannot meet the requirements of non-culturable viable bacterial cells and rapid on-site food detection.Therefore, in recent years, various immunoassays for foodborne pathogens have been developed, which are more sensitive, simple and efficient than the traditional methods, and have broad application prospects.Based on the biological characteristics of sublethal injury, viable but non-culturable (VBNC) and dormant states, as well as the types and characteristics of antibodies, this paper reviewed the detection principle, advantages and disadvantages, and applications of the current common immunoassays for foodborne pathogens.The limitations of the existing methods and the future development direction were discussed to provide reference for the development and utilization of immunoassays for foodborne pathogens.

Cite this article

SU Na , MING Liang , HE Jing , JI Rimutu , Tuyatsetseg Jambal , Dulguun Dorjgotov , YI Li . Research progress on application of immunoassays in foodborne pathogens[J]. Food and Fermentation Industries, 2024 , 50(12) : 343 -352 . DOI: 10.13995/j.cnki.11-1802/ts.036138

References

[1] DWIVEDI H P, JAYKUS L A.Detection of pathogens in foods:The current state-of-the-art and future directions[J].Critical Reviews in Microbiology, 2011, 37(1):40-63.
[2] OLIVER S P, JAYARAO B M, ALMEIDA R A.Foodborne pathogens in milk and the dairy farm environment:Food safety and public health implications[J].Foodborne Pathogens and Disease, 2005, 2(2):115-129.
[3] DAVEY H M.Life, death, and in-between:Meanings and methods in microbiology[J].Applied and Environmental Microbiology, 2011, 77(16):5571-5576.
[4] ZHAO Y N, ZENG D X, YAN C, et al.Rapid and accurate detection of Escherichia coli O157∶H7 in beef using microfluidic wax-printed paper-based ELISA[J].The Analyst, 2020, 145(8):3106-3115.
[5] VERDOODT N, BASSO C R, ROSSI B F, et al.Development of a rapid and sensitive immunosensor for the detection of bacteria[J].Food Chemistry, 2017, 221:1792-1796.
[6] DI FEBO T, SCHIRONE M, VISCIANO P, et al.Development of a capture ELISA for rapid detection of Salmonella enterica in food samples[J].Food Analytical Methods, 2019, 12(2):322-330.
[7] KELL D B, KAPRELYANTS A S, WEICHART D H, et al.Viability and activity in readily culturable bacteria:A review and discussion of the practical issues[J].Antonie Van Leeuwenhoek, 1998, 73(2):169-187.
[8] ESPINA L, GARCÍA-GONZALO D, PAGÁN R.Detection of thermal sublethal injury in Escherichia coli via the selective medium plating technique:Mechanisms and improvements[J].Frontiers in Microbiology, 2016, 7:1376.
[9] WESCHE A M, GURTLER J B, MARKS B P, et al.Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens[J].Journal of Food Protection, 2009, 72(5):1121-1138.
[10] AYRAPETYAN M, OLIVER J D.The viable but non-culturable state and its relevance in food safety[J].Current Opinion in Food Science, 2016, 8:127-133.
[11] RAMAMURTHY T, GHOSH A, PAZHANI G P, et al.Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria[J].Frontiers in Public Health, 2014, 2:103.
[12] DING T, LIAO X Y, FENG J S.Stress Responses of Foodborne Pathogens[M].Cham:Springer Nature, 2022.
[13] HOLFORD T R J, DAVIS F, HIGSON S P J.Recent trends in antibody based sensors[J].Biosensors and Bioelectronics, 2012, 34(1):12-24.
[14] PANDEY S.Hybridoma technique for production of monoclonal antibodies[J].International Journal of Pharmaceutical Sciences Review and Research, 2010, 1(2):88-94.
[15] 赵欣悦, 杨晓梅, 孙树阳, 等.纳米抗体的特性及其在免疫检测中的研究进展[J].生命科学, 2021, 33(4):472-478.
ZHAO X Y, YANG X M, SUN S Y, et al.Characteristics of nanobody and its research advances in immunoassay[J].Chinese Bulletin of Life Sciences, 2021, 33(4):472-478.
[16] 陈奇. 单核细胞增生性李斯特菌单克隆抗体、多克隆抗体及单域重链抗体的制备[D].南昌:南昌大学, 2014.
CHEN Q.Preparation of anti-Listeria monocytogenes monoclonal antibody, polyclonal antibodies and single-domain heavy chain antibody[D].Nanchang:Nanchang University, 2014.
[17] BYRNE B, STACK E, GILMARTIN N, et al.Antibody-based sensors:Principles, problems and potential for detection of pathogens and associated toxins[J].Sensors, 2009, 9(6):4407-4445.
[18] HOLLIGER P, HUDSON P J.Engineered antibody fragments and the rise of single domains[J].Nature Biotechnology, 2005, 23(9):1126-1136.
[19] HAMERS-CASTERMAN C, ATARHOUCH T, MUYLDERMANS S, et al.Naturally occurring antibodies devoid of light chains[J].Nature, 1993, 363(6428):446-448.
[20] MUYLDERMANS S.Nanobodies:Natural single-domain antibodies[J].Annual Review of Biochemistry, 2013, 82:775-797.
[21] 严昊, 冯建远, 张子仪, 等.纳米抗体的制备与临床应用研究进展[J].中国畜牧兽医, 2021, 48(2):685-694.
YAN H, FENG J Y, ZHANG Z Y, et al.Progress in preparation and clinical application of nanobody[J].China Animal Husbandry & Veterinary Medicine, 2021, 48(2):685-694.
[22] LI C, TANG Z R, HU Z X, et al.Natural single-domain antibody-nanobody:A novel concept in the antibody field[J].Journal of Biomedical Nanotechnology, 2018, 14(1):1-19.
[23] CHUNGLOK W, WURAGIL D K, OAEW S, et al.Immunoassay based on carbon nanotubes-enhanced ELISA for Salmonella enterica serovar Typhimurium[J].Biosensors and Bioelectronics, 2011, 26(8):3584-3589.
[24] HU Y Z, SUN Y, GU J X, et al.Selection of specific nanobodies to develop an immuno-assay detecting Staphylococcus aureus in milk[J].Food Chemistry, 2021, 353:129481.
[25] ZHANG C, LIU Z L, BAI M F, et al.An ultrasensitive sandwich chemiluminescent enzyme immunoassay based on phage-mediated double-nanobody for detection of Salmonella Typhimurium in food[J].Sensors and Actuators B:Chemical, 2022, 352:131058.
[26] WEI T X, DU D, ZHU M J, et al.An Improved ultrasensitive enzyme-linked immunosorbent assay using Hydrangea-like antibody-enzyme-inorganic three-in-one nanocomposites[J].ACS Applied Materials & Interfaces, 2016, 8(10):6329-6335.
[27] CHEN R, HUANG X L, XU H Y, et al.Plasmonic enzyme-linked immunosorbent assay using nanospherical brushes as a catalase container for colorimetric detection of ultralow concentrations of Listeria monocytogenes[J].ACS Applied Materials & Interfaces, 2015, 7(51):28632-28639.
[28] 范莉. 酶联免疫吸附法在食品检验中的实践应用研究[J].食品安全导刊, 2021(27):135-136.
FAN L.Study on the practical application of enzyme-linked immunosorbent assay in food inspection[J].China Food Safety Magazine, 2021(27):135-136.
[29] GONDHALEKAR C, BIELA E, RAJWA B, et al.Detection of E.coli labeled with metal-conjugated antibodies using lateral-flow assay and laser-induced breakdown spectroscopy[J].Analytical and Bioanalytical Chemistry, 2020, 412(6):1291-1301.
[30] ZENG L, GUO L L, WANG Z X, et al.Gold nanoparticle-based immunochromatographic assay for detection Pseudomonas aeruginosa in water and food samples[J].Food Chemistry:X, 2021, 9:100117.
[31] DUAN M L, HUANG Y M, WU S S, et al.Rapid and sensitive detection of Salmonella enteritidis by a pre-concentrated immunochromatographic assay in a large-volume sample system[J].RSC Advances, 2017, 7(87):55141-55147.
[32] ZHU C J, ZHAO G Y, DOU W C.Core-shell red silica nanoparticles based immunochromatographic assay for detection of Escherichia coli O157∶H7[J].Analytica Chimica Acta, 2018, 1038:97-104.
[33] XIE Q Y, WU Y H, XIONG Q R, et al.Advantages of fluorescent microspheres compared with colloidal gold as a label in immunochromatographic lateral flow assays[J].Biosensors and Bioelectronics, 2014, 54:262-265.
[34] ZHANG B, YANG X S, LIU X X, et al.Polyethyleneimine-interlayered silica-core quantum dot-shell nanocomposites for sensitive detection of Salmonella typhimurium via a lateral flow immunoassay[J].RSC Advances, 2020, 10(5):2483-2489.
[35] HAO M, ZHANG P P, LI B S, et al.Development and evaluation of an up-converting phosphor technology-based lateral flow assay for the rapid, simultaneous detection of Vibrio cholerae serogroups O1 and O139[J].PLoS One, 2017, 12(6):e0179937.
[36] WANG Q, LONG M Y, LV C Y, et al.Lanthanide-labeled fluorescent-nanoparticle immunochromatographic strips enable rapid and quantitative detection of Escherichia coli O157∶H7 in food samples[J].Food Control, 2020, 109:106894.
[37] CHO I H, IRUDAYARAJ J.Lateral-flow enzyme immunoconcentration for rapid detection of Listeria monocytogenes[J].Analytical and Bioanalytical Chemistry, 2013, 405(10):3313-3319.
[38] NGOM B, GUO Y C, WANG X L, et al.Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants:A review[J].Analytical and Bioanalytical Chemistry, 2010, 397(3):1113-1135.
[39] ZENG H J, GUO W B, LIANG B B, et al.Self-paired monoclonal antibody lateral flow immunoassay strip for rapid detection of Acidovorax avenae subsp.citrulli[J].Analytical and Bioanalytical Chemistry, 2016, 408(22):6071-6078.
[40] BHARDWAJ N, BHARDWAJ S K, BHATT D, et al.Highly sensitive optical biosensing of Staphylococcus aureus with an antibody/metal-organic framework bioconjugate[J].Analytical Methods, 2019, 11(7):917-923.
[41] CHEN A L, YANG S M.Replacing antibodies with aptamers in lateral flow immunoassay[J].Biosensors and Bioelectronics, 2015, 71:230-242.
[42] HASSAN A H A, BERGUA J F, MORALES-NARVáEZ E, et al.Validity of a single antibody-based lateral flow immunoassay depending on graphene oxide for highly sensitive determination of E.coli O157∶H7 in minced beef and river water[J].Food Chemistry, 2019, 297:124965.
[43] SONG C M, LI J W, LIU J X, et al.Simple sensitive rapid detection of Escherichia coli O157∶H7 in food samples by label-free immunofluorescence strip sensor[J].Talanta, 2016, 156:42-47.
[44] LIU C, FANG S Q, TIAN Y C, et al.An aggregation-induced emission material labeling antigen-based lateral flow immunoassay strip for rapid detection of Escherichia coli O157:H7[J].SLAS Technology, 2021, 26(4):377-383.
[45] BU T, HUANG Q, YAN L Z, et al.Applicability of biological dye tracer in strip biosensor for ultrasensitive detection of pathogenic bacteria[J].Food Chemistry, 2019, 274:816-821.
[46] BU T, WANG J L, HUANG L J, et al.New functional tracer-two-dimensional nanosheet-based immunochromatographic assay for Salmonella enteritidis detection[J].Journal of Agricultural and Food Chemistry, 2019, 67(23):6642-6649.
[47] STEVENS K A, JAYKUS L A.Bacterial separation and concentration from complex sample matrices:A review[J].Critical Reviews in Microbiology, 2004, 30(1):7-24.
[48] KIM T H, PARK J, KIM C J, et al.Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens[J].Analytical Chemistry, 2014, 86(8):3841-3848.
[49] DAVIS R, IRUDAYARAJ J, REUHS B L, et al.Detection of E.coli O157∶H7 from ground beef using Fourier transform infrared (FT-IR) spectroscopy and chemometrics[J].Journal of Food Science, 2010, 75(6):M340-M346.
[50] CHAI Z L, BI H Y.Capture and identification of bacteria from fish muscle based on immunomagnetic beads and MALDI-TOF MS[J].Food Chemistry:X, 2022, 13:100225.
[51] SHEN Z Q, WANG J F, QIU Z G, et al.QCM immunosensor detection of Escherichia coli O157∶H7 based on beacon immunomagnetic nanoparticles and catalytic growth of colloidal gold[J].Biosensors and Bioelectronics, 2011, 26(7):3376-3381.
[52] ESTEBAN-FERNÁNDEZ DE ÁVILA B, PEDRERO M, CAMPUZANO S, et al.Sensitive and rapid amperometric magnetoimmunosensor for the determination of Staphylococcus aureus[J].Analytical and Bioanalytical Chemistry, 2012, 403(4):917-925.
[53] WANG S J, XU D P, DING C C, et al.A colorimetric immunoassay for determination of Escherichia coli O157∶H7 based on oxidase-like activity of cobalt-based zeolitic imidazolate framework[J].Mikrochimica Acta, 2020, 187(9):506.
[54] ZHU P X, SHELTON D R, LI S H, et al.Detection of E.coli O157∶H7 by immunomagnetic separation coupled with fluorescence immunoassay[J].Biosensors and Bioelectronics, 2011, 30(1):337-341.
[55] ZHANG Y, TAN C, FEI R H, et al.Sensitive chemiluminescence immunoassay for E.coli O157∶H7 detection with signal dual-amplification using glucose oxidase and laccase[J].Analytical Chemistry, 2014, 86(2):1115-1122.
[56] BU S J, WANG K Y, WANG C Y, et al.Immunoassay for foodborne pathogenic bacteria using magnetic composites Ab@Fe3O4, signal composites Ap@PtNp, and thermometer readings[J].Mikrochimica Acta, 2020, 187(12):679.
[57] BARIZUDDIN S, BALAKRISHNAN B, STRINGER R C, et al.Highly specific and rapid immuno-fluorescent visualization and detection of E.coli O104:H4 with protein-a coated magnetic beads based LST-MUG assay[J].Journal of Microbiological Methods, 2015, 115:27-33.
[58] 李孝权, 王鸣, 易鸿, 等.非可培养状态霍乱弧菌的间接免疫荧光检测[J].中国公共卫生, 2005, 21(12):1437-1438.
LI X Q, WANG M, YI H, et al.Detection of Vibrio cholerae in nonculturable state by indirect immunofluorescent assay[J].China Public Health, 2005, 21(12):1437-1438.
[59] BALAKRISHNAN B, BARIZUDDIN S, WULIJI T, et al.A rapid and highly specific immunofluorescence method to detect Escherichia coli O157:H7 in infected meat samples[J].International Journal of Food Microbiology, 2016, 231:54-62.
[60] CHO I H, MAUER L, IRUDAYARAJ J.In-situ fluorescent immunomagnetic multiplex detection of foodborne pathogens in very low numbers[J].Biosensors and Bioelectronics, 2014, 57:143-148.
[61] 章钢刚, 赖卫华.食源性致病菌免疫学检测方法研究进展[J].食品安全质量检测学报, 2015, 6(9):3414-3419.
ZHANG G G, LAI W H.Research progress of immunological detection methods of foodborne pathogen[J].Journal of Food Safety & Quality, 2015, 6(9):3414-3419.
[62] XIONG J, WANG W W, ZHOU Y L, et al.Ultra-sensitive chemiluminescent detection of Staphylococcus aureus based on competitive binding of Staphylococcus protein A-modified magnetic beads to immunoglobulin G[J].Microchimica Acta, 2016, 183(4):1507-1512.
[63] YANG S J, OUYANG H, SU X X, et al.Dual-recognition detection of Staphylococcus aureus using vancomycin-functionalized magnetic beads as concentration carriers[J].Biosensors and Bioelectronics, 2016, 78:174-180.
[64] MAGLIULO M, SIMONI P, GUARDIGLI M, et al.A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria[J].Journal of Agricultural and Food Chemistry, 2007, 55(13):4933-4939.
[65] LIU D Q, LI T C, HUANG W C, et al.Electrochemiluminescent detection of Escherichia coli O157∶H7 based on Ru(bpy)32+/ZnO nanorod arrays[J].Nanotechnology, 2019, 30(2):025501.
[66] WEI H, WANG E K.Electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its applications in bioanalysis:A review[J].Luminescence, 2011, 26(2):77-85.
[67] LI S, LIU J L, CHEN Z T, et al.Electrogenerated chemiluminescence on smartphone with graphene quantum dots nanocomposites for Escherichia coli detection[J].Sensors and Actuators B:Chemical, 2019, 297:126811.
[68] LIN J H, JU H X.Electrochemical and chemiluminescent immunosensors for tumor markers[J].Biosensors and Bioelectronics, 2005, 20(8):1461-1470.
[69] HUANG H, LIU M H, WANG X S, et al.Label-free 3D Ag nanoflower-based electrochemical immunosensor for the detection of Escherichia coli O157:H7 pathogens[J].Nanoscale Research Letters, 2016, 11(1):507.
[70] FELIX F S, ANGNES L.Electrochemical immunosensors-A powerful tool for analytical applications[J].Biosensors and Bioelectronic, 2018, 102:470-478.
[71] LI Y, CHENG P, GONG J H, et al.Amperometric immunosensor for the detection of Escherichia coli O157∶H7 in food specimens[J].Analytical Biochemistry, 2012, 421(1):227-233.
[72] ROUSHANI M, RAHMATI Z, GOLCHIN M, et al.Electrochemical immunosensor for determination of Staphylococcus aureus bacteria by IgY immobilized on glassy carbon electrode with electrodeposited gold nanoparticles[J].Mikrochimica Acta, 2020, 187(10):567.
[73] MUTLAQ S, ALBISS B, AL-NABULSI A A, et al.Conductometric immunosensor for Escherichia coli O157∶H7 detection based on polyaniline/zinc oxide (PANI/ZnO) nanocomposite[J].Polymers, 2021, 13(19):3288.
[74] SILVA N F D, ALMEIDA C M R, MAGALHÃES J M C S, et al.Development of a disposable paper-based potentiometric immunosensor for real-time detection of a foodborne pathogen[J].Biosensors and Bioelectronics, 2019, 141:111317.
[75] CHORTI P, KAZI A P, HAQUE A M J, et al.Flow-through electrochemical immunoassay for targeted bacteria detection[J].Sensors and Actuators B:Chemical, 2022, 351:130965.
[76] FARKA Z, JUÍK T, PASTUCHA M, et al.Enzymatic precipitation enhanced surface plasmon resonance immunosensor for the detection of Salmonella in powdered milk[J].Analytical Chemistry, 2016, 88(23):11830-11836.
[77] YANG Y, LI G L, WANG P X, et al.Highly sensitive multiplex detection of foodborne pathogens using a SERS immunosensor combined with novel covalent organic frameworks based biologic interference-free Raman tags[J].Talanta, 2022, 243:123369.
[78] WANG P, YU G G, WEI J, et al.A single thiolated-phage displayed nanobody-based biosensor for label-free detection of foodborne pathogen[J].Journal of Hazardous Materials, 2023, 443(Pt A):130157.
[79] 董永贞, 陈瑞, 吴紫荆, 等.铂壳金核纳米酶介导的磁弛豫免疫传感器快速检测食源性沙门氏菌[J].食品科学, 2023, 44(4):337-343.
DONG Y Z, CHEN R, WU Z J, et al.Gold Core@Platinum shell-nanozyme-mediated magnetic relaxation immunosensor for the rapid detection of foodborne Salmonella[J].Food Science, 2023, 44(4):337-343.
Outlines

/