Correlation analysis of microbiomics and volatile metabolites in fermented grains from Luzhou-flavor liquor

  • JIA Yonglei ,
  • ZHANG Suyi ,
  • XU Defu ,
  • WANG Sinong ,
  • AO Zonghua ,
  • JIA Junjie ,
  • YANG Yan ,
  • CHEN Yao ,
  • HUANG Zhijiu ,
  • FU Xin ,
  • ZHANG Yujun
Expand
  • 1(College of Bioengineering, Sichuan University of Science and Technology, Yibin 644000, China)
    2(Luzhou Laojiao Co., Ltd, Luzhou, 646000, China)
    3(National Engineering Research Center of Solid-state Brewing, Luzhou 646000, China)

Received date: 2024-02-29

  Revised date: 2024-03-28

  Online published: 2024-08-02

Abstract

In order to reveal the temporal characteristics of microorganisms and volatile metabolites in the spirits of Luzhou-flavor liquor, and to elucidate the intrinsic mechanism of “strong Jiao-aroma” of Luzhou-flavor liquor.In this study, we analyzed the microbial compositions of bad spirits at different fermentation time points by macro-genome sequencing, and determined the types and contents of metabolites in bad spirits by HS-SPME-GCMS, as well as the contents of moisture, acidity, starch, and reducing sugar, and performed Pearson's correlation analysis.The results showed that the microorganisms and volatile metabolites in the grains had obvious temporal characteristics, and their compositions and contents changed continuously with the extension of fermentation time.Lactobacillus, Limosilactobacillus, Weissella, Bacillus, Pediococcus, Kazachstania.Aspergillus, Thermoascus, Thermomyces and Issatchenkia were the dominant flora in the fermentation of leavened grains, which had a close relationship with the production of 163 metabolites such as ethyl caproate, ethyl lactate and ethyl acetate.In addition, it was found that the lees of strong-flavored white wines underwent three typical stages of fermentation:saccharification, alcohol production and aroma formation, and in particular, the large amount of ethyl caproate, ethyl lactate and ethyl acetate produced in the aroma formation stage was the intrinsic mechanism to ensure the “strong Jiao-aroma”.

Cite this article

JIA Yonglei , ZHANG Suyi , XU Defu , WANG Sinong , AO Zonghua , JIA Junjie , YANG Yan , CHEN Yao , HUANG Zhijiu , FU Xin , ZHANG Yujun . Correlation analysis of microbiomics and volatile metabolites in fermented grains from Luzhou-flavor liquor[J]. Food and Fermentation Industries, 2024 , 50(13) : 72 -81 . DOI: 10.13995/j.cnki.11-1802/ts.039021

References

[1] 卫春会, 郑自强, 李浩, 等.浓香型白酒酒醅发酵过程中风味物质时空差异分析[J].食品与发酵工业, 2022, 48(5):240-246.
WEI C H, ZHENG Z Q, LI H, et al.Time and spatial distribution difference of flavor compounds during the fermentation of fermented grains of Luzhou-flavor Baijiu[J].Food and Fermentation Industries, 2022, 48(5):240-246.
[2] 赵亮亮, 盛伟喜, 时晓, 等.浓香型白酒酿造生境中微生物群落多样性及群落间相互作用[J].中国酿造, 2023, 42(11):15-21.
ZHAO L L, SHENG W X, SHI X, et al.Research progress on microbial community diversity and interaction in strong-flavor Baijiu brewing habitat[J].China Brewing, 2023, 42(11):15-21.
[3] KANG J M, SUN Y T, HUANG X N, et al.Unraveling the microbial compositions, metabolic functions, and antibacterial properties of Huangshui, a byproduct of Baijiu fermentation[J].Food Research International, 2022, 157:111320.
[4] 李璇, 戚居胜, 韩四海, 等.浓香型白酒杜康酒醅发酵过程中理化指标变化规律[J].食品与发酵工业, 2019, 45(11):52-57.
LI X, QI J S, HAN S H, et al.Changes in physicochemical properties of fermented grains of strong-aroma liquor ‘Dukang'during fermentation[J].Food and Fermentation Industries, 2019, 45(11):52-57.
[5] 宋建阳, 梁莉莹, 岑定运, 等.浓香型白酒发酵过程中酒醅微生物群落结构解析及其与风味物质的相关性[J].食品研究与开发, 2023, 44(14):86-92.
SONG J Y, LIANG L Y, CEN D Y, et al.Microbial community and its correlation with flavor compounds of fermented grains during strong-flavor Baijiu fermentation[J].Food Research and Development, 2023, 44(14):86-92.
[6] 焦文婧, 谢菲, 高蕾, 等.浓香型酒醅中微生物群落及其与乙酸和乙酸乙酯的相关性分析[J].中国酿造, 2023, 42(4):96-102.
JIAO W J, XIE F, GAO L, et al.Microbial community and their correlations with acetic acid and ethyl acetate in fermented grains of strong-flavor Baijiu[J].China Brewing, 2023, 42(4):96-102.
[7] MIAO Z J, BAI Y, WANG X L, et al.Unravelling metabolic heterogeneity of Chinese Baijiu fermentation in age-gradient vessels[J].Foods, 2023, 12(18):3425.
[8] 胡晓龙, 王康丽, 余苗, 等.浓香型酒醅微生物菌群演替规律及其空间异质性[J].食品与发酵工业, 2020, 46(10):66-73.
HU X L, WANG K L, YU M, et al.Microbial community succession pattern and spatial heterogeneity in fermented grains of strong-flavor Baijiu[J].Food and Fermentation Industries, 2020, 46(10):66-73.
[9] 余松柏, 赵兴蓉, 邵燕, 等.浓香型白酒酒醅发酵过程中30种有机酸空间与时间的分布规律[J/OL].食品与发酵工业, 2024.https://doi.org/10.13995/j.cnki.11-1802/ts.037022.
YU S B, ZHAO X R, SHAO Y, et al.Spatial and time distribution of 30 organic acids during the fermentation in fermented grains of nongxiangxing Baijiu[J/OL].Food and Fermentation Industries, 2024.https://doi.org/10.13995/j.cnki.11-1802/ts.037022.
[10] 泸州老窖集团有限责任公司. 泸型酒技艺大全[M].北京:中国轻工业出版社, 2011:387-399.
LUZHOULAOJIAO Group Co., LTD.A Complete List of Lu-Type Wine Techniques [M].Beijing:China Light Industry Press, 2011:387-399.
[11] ZHENG C Z, CAO J M, CHI S Y, et al.Dietary phosphorus supplementation in the diet of Pacific white shrimp (Litopenaeus vannamei) alleviated the adverse impacts caused by high Clostridium autoethanogenum protein[J].Fish & Shellfish Immunology, 2022, 131:137-149.
[12] HALL M, BEIKO R G.16S rRNA gene analysis with QIIME2[J].Methods in Molecular Biology, 2018, 1849:113-129.
[13] DOUGLAS G M, MAFFEI V J, ZANEVELD J R, et al.PICRUSt2 for prediction of metagenome functions[J].Nature Biotechnology, 2020, 38(6):685-688.
[14] ROSENBAUM P R, SMALL D S.An adaptive Mantel-Haenszel test for sensitivity analysis in observational studies[J].Biometrics, 2017, 73(2):422-430.
[15] YAO F, YI B, SHEN C H, et al.Chemical analysis of the Chinese liquor Luzhoulaojiao by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry[J].Scientific Reports, 2015, 5:9553.
[16] PORTO M C W, KUNIYOSHI T M, AZEVEDO P O S, et al.Pediococcus spp.:An important genus of lactic acid bacteria and pediocin producers[J].Biotechnology Advances, 2017, 35(3):361-374.
[17] KSIEZAREK M, GROSSO F, RIBEIRO T G, et al.Genomic diversity of genus Limosilactobacillus[J].Microbial Genomics, 2022, 8(7):mgen000847.
[18] KIM E, YANG S M, KIM H Y.Weissella and the two Janus faces of the genus[J].Applied Microbiology and Biotechnology, 2023, 107(4):1119-1127.
[19] BOMRUNGNOK W, ARAI T, YOSHIHASHI T, et al.Direct production of polyhydroxybutyrate from waste starch by newly-isolated Bacillus aryabhattai T34-N4[J].Environmental Technology, 2020, 41(25):3318-3328.
[20] WANG X S, WANG B W, SUN Z G, et al.Effects of modernized fermentation on the microbial community succession and ethyl lactate metabolism in Chinese Baijiu fermentation[J].Food Research International, 2022, 159:111566.
[21] MENDONÇA A P S, DOS REIS K L, BARBOSA-TESSMANN I P.Aspergillus clavatus UEM 04:An efficient producer of glucoamylase and α-amylase able to hydrolyze gelatinized and raw starch[J].International Journal of Biological Macromolecules, 2023, 249:125890.
[22] LIU N, LI X L, HU Y, et al.Effects of Lentilactobacillus buchneri and Kazachstania bulderi on the quality and flavor of Guizhou fermented red sour soup[J].Foods, 2023, 12(20):3753.
[23] LYU W Z, LI F, LI C G.Effect of inoculated Daqu on the spontaneous fermentation of Chinese liquor[J].Food Research International, 2023, 173:113321.
[24] ZHANG Y Y, ZHU X Y, LI X Z, et al.The process-related dynamics of microbial community during a simulated fermentation of Chinese strong-flavored liquor[J].BMC Microbiology, 2017, 17(1):196.
[25] HE M W, JIN Y, LIU M M, et al.Metaproteomic investigation of enzyme profile in Daqu used for the production of Nongxiangxing Baijiu[J].International Journal of Food Microbiology, 2023, 400:110250.
[26] MEADEN P, OGDEN K, BUSSEY H, et al.A DEX gene conferring production of extracellular amyloglucosidase on yeast[J].Gene, 1985, 34(2-3):325-334.
[27] TAN Y L, MA S, LEONHARD M, et al.β-1, 3-glucanase disrupts biofilm formation and increases antifungal susceptibility of Candida albicans DAY185[J].International Journal of Biological Macromolecules, 2018, 108:942-946.
[28] LIU X X, LI Z J, CHEN Z, et al.Production of L-ribulose using an encapsulated L-arabinose isomerase in yeast spores[J].Journal of Agricultural and Food Chemistry, 2019, 67(17):4868-4875.
[29] PERVEZ S, NAWAZ M A, SHAHID F, et al.Characterization of cross-linked amyloglucosidase aggregates from Aspergillus fumigatus KIBGE-IB33 for continuous production of glucose[J].International Journal of Biological Macromolecules, 2019, 135:1252-1260.
[30] TAIBI H, BOUDRIES N, ABDELHAI M, et al.Comparison of immobilized and free amyloglucosidase process in glucose SyrupsProduction from white sorghum starch[J].Chemistry & Biodiversity, 2023, 20(8):e202300071.
[31] CARBONETTO B, NIDELET T, GUEZENEC S, et al.Interactions between Kazachstania humilis yeast species and lactic acid bacteria in sourdough[J].Microorganisms, 2020, 8(2):240.
[32] LIU C J, DU Y F, ZHENG J, et al.Production of caproic acid by Rummeliibacillus suwonensis 3B-1 isolated from the pit mud of strong-flavor Baijiu[J].Journal of Biotechnology, 2022, 358:33-40.
[33] 牟薏,卫春会,曾波, 等.基于黄水线上下层酒醅及基酒的风味特征分析[J/OL].食品与发酵工业, 2024.https://doi.org/10.13995/j.cnki.11-1802/ts.037728.
MOU Y, WEI C H, ZENG B, et al.Analysis of flavor characteristics of fermented grains above and below the Huangshui line[J/OL].Food and Fermentation Industries, 2024.https://doi.org/10.13995/j.cnki.11-1802/ts.037728.
Outlines

/