[1] NAEMI R, SHAHMORADI L.Global experience of diabetes registries:A systematic review[J].Advances in Experimental Medicine and Biology, 2021, 1307:441-455.
[2] 杨玉洁, 刘静宜, 谭艳, 等.多糖降血糖活性构效关系及作用机制研究进展[J].食品科学, 2021, 42(23):355-363.
YANG Y J, LIU J Y, TAN Y, et al.Progress in understanding the structure-activity relationship and hypoglycemic mechanism of polysaccharides[J].Food Science, 2021, 42(23):355-363.
[3] GRUNBERGER G.Should side effects influence the selection of antidiabetic therapies in type 2 diabetes?[J].Current Diabetes Reports, 2017, 17(4):21.
[4] XIAN M H, CAI J L, ZHENG K N, et al.Aloe-emodin prevents nerve injury and neuroinflammation caused by ischemic stroke via the PI3K/AKT/mTOR and NF-κB pathway[J].Food and Function, 2021, 12(17):8056-8067.
[5] ABDELLATEF A A, FATHY M, MOHAMMED A E S I, et al.Inhibition of cell-intrinsic NF-κB activity and metastatic abilities of breast cancer by aloe-emodin and emodic-acid isolated from Asphodelus microcarpus[J].Journal of Natural Medicines, 2021, 75(4):840-853.
[6] PÉREZ Y Y, JIMÉNEZ-FERRER E, ZAMILPA A, et al.Effect of a polyphenol-rich extract from aloe vera gel on experimentally induced insulin resistance in mice[J].The American Journal of Chinese Medicine, 2007, 35(6):1037-1046.
[7] 丁浩轩, 赵阳, 冯杰.基于网络药理学探讨植物提取物在饲料添加剂领域的研究进展[J].动物营养学报, 2021, 33(6):3065-3071.
DING H X, ZHAO Y, FENG J.Research progress on discussion of plant extracts in field of feed additives based on network pharmacology[J].Chinese Journal of Animal Nutrition, 2021, 33(6):3065-3071.
[8] 赵梦瑶, 潘芊钰, 曹颖.基于网络药理学探究金芪降糖片治疗2型糖尿病作用机制[J].中国医药科学, 2023, 13(5):45-48;56.
ZHAO M Y, PAN Q Y, CAO Y.Exploring the mechanism of jinqi Jiangtang Tablets in the treatment of type 2 diabetes mellitus based on network pharmacology[J].China Medicine, 2023, 13(5):45-48;56.
[9] 黄慧珍, 王松松, 林凡, 等.基于网络药理学探讨石斛治疗2型糖尿病的作用机制[J].世界中医药, 2022, 17(19):2718-2722.
HUANG H Z, WANG S S, LIN F, et al.Mechanism of dendrobii caulis in treatment of type 2 diabetes based on network pharmacology[J].World Chinese Medicine, 2022, 17(19):2718-2722.
[10] SZKLARCZYK D, GABLE A L, LYON D, et al.STRING v11:Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J].Nucleic Acids Research, 2018, 47(D1):D607-D613.
[11] ZHENG S C, BAAK J P, LI S, et al.Network pharmacology analysis of the therapeutic mechanisms of the traditional Chinese herbal formula Lian Hua Qing Wen in Corona virus disease 2019 (COVID-19), gives fundamental support to the clinical use of LHQW[J].Phytomedicine, 2020, 79:153336.
[12] 李佳芸, 王欣之, 韦源青, 等.基于网络药理学与分子对接研究马氏珍珠贝降糖活性肽[J].食品与发酵工业, 2022, 48(15):176-184.
LI J Y, WANG X Z, WEI Y Q, et al.Screening of potential anti-diabetic peptides from Pinctada martensii flesh based on network pharmacology and molecular docking techniques[J].Food and Fermentation Industries, 2022, 48(15):176-184.
[13] 董硕, 汤春波.PI3K/AKT信号通路在2型糖尿病患者种植体骨结合中作用机制的研究进展[J].口腔医学, 2022, 42(11):1026-1030;1035.
DONG S, TANG C B.Progress of research on the mechanism of PI3K/AKT signaling pathway in implant osseointegration in patients with type 2 diabetes mellitus[J].Stomatology, 2022, 42(11):1026-1030;1035.
[14] TOMITA T.Apoptosis in pancreatic β-islet cells in type 2 diabetes[J].Bosnian Journal of Basic Medical Sciences, 2016, 16(3):162-179.
[15] JUD P, SOURIJ H.Therapeutic options to reduce advanced glycation end products in patients with diabetes mellitus:A review[J].Diabetes Research and Clinical Practice, 2019, 148:54-63.
[16] HAYES H L, PETERSON B S, HALDEMAN J M, et al.Delayed apoptosis allows islet β-cells to implement an autophagic mechanism to promote cell survival[J].PLoS One, 2017, 12(2):e0172567.
[17] MIETTINEN P J, HUOTARI M A, KOIVISTO T, et al.Impaired migration and delayed differentiation of pancreatic islet cells in mice lacking EGF-receptors[J].Development, 2000, 127(12):2617-2627.
[18] MEIER D T, TU L H, ZRAIKA S, et al.Matrix metalloproteinase-9 protects islets from amyloid-induced toxicity[J].The Journal of Biological Chemistry, 2015, 290(51):30475-30485.
[19] NAGY V, BOZDAGI O, MATYNIA A, et al.Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory[J].The Journal of Neuroscience, 2006, 26(7):1923-1934.
[20] WAGMAN A S, JOHNSON K W, BUSSIERE D E.Discovery and development of GSK3 inhibitors for the treatment of type 2 diabetes[J].Current Pharmaceutical Design, 2004, 10(10):1105-1137.
[21] BADER G D, BETEL D, HOGUE C W V.BIND:The biomolecular interaction network database[J].Nucleic Acids Research, 2003, 31(1):248-250.
[22] BELLINGER D A, MERRICKS E P, NICHOLS T C.Swine models of type 2 diabetes mellitus:Insulin resistance, glucose tolerance, and cardiovascular complications[J].ILAR Journal, 2006, 47(3):243-258.
[23] SIGISMUND S, AVANZATO D, LANZETTI L.Emerging functions of the EGFR in cancer[J].Molecular Oncology, 2018, 12(1):3-20.
[24] LI Z L, LI Y, OVERSTREET J M, et al.Inhibition of epidermal growth factor receptor activation is associated with improved diabetic nephropathy and insulin resistance in type 2 diabetes[J].Diabetes, 2018, 67(9):1847-1857.
[25] LAMBADIARI V, MITROU P, MARATOU E, et al.Thyroid hormones are positively associated with insulin resistance early in the development of type 2 diabetes[J].Endocrine, 2011, 39(1):28-32.
[26] AL-KURAISHY H M, AL-GAREEB A I, AWAD M S, et al.Assessment of serum prolactin levels in acute myocardial infarction:The role of pharmacotherapy[J].Indian Journal of Endocrinology and Metabolism, 2016, 20(1):72-79.
[27] RASHEED H A, AL-KURAISHY H M, AL-GAREEB A I, et al.Effects of diabetic pharmacotherapy on prolactin hormone in patients with type 2 diabetes mellitus:Bane or boon[J].Journal of Advanced Pharmaceutical Technology & Research, 2019, 10(4):163-168.
[28] TIWARI A, AL-ROBEH H, SHARMA H, et al.Steroid-induced diabetic ketoacidosis in a patient with type 2 diabetes mellitus[J].AACE Clinical Case Reports, 2018, 4(2):131-133.
[29] SHAH P, KALRA S, YADAV Y, et al.Management of glucocorticoid-induced hyperglycemia[J].Diabetes, Metabolic Syndrome and Obesity:Targets and Therapy, 2022, 15:1577-1588.
[30] CLORE J N, THURBY-HAY L.Glucocorticoid-induced hyperglycemia[J].Endocrine Practice: Official Journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists, 2009, 15(5):469-474.
[31] LE T N, NESTLER J E, STRAUSS J F, et al.Sex hormone-binding globulin and type 2 diabetes mellitus[J].Trends in Endocrinology and Metabolism, 2012, 23(1):32-40.
[32] ELKSNIS A, MARTINELL M, ERIKSSON O, et al.Heterogeneity of metabolic defects in type 2 diabetes and its relation to reactive oxygen species and alterations in beta-cell mass[J].Frontiers in Physiology, 2019, 10:107.
[33] KHONDKARYAN L, MARGARYAN S, POGHOSYAN D, et al.Impaired inflammatory response to LPS in type 2 diabetes mellitus[J].International Journal of Inflammation, 2018, 2018:2157434.
[34] GAO J R, QIN X J, FANG Z H, et al.To explore the pathogenesis of vascular lesion of type 2 diabetes mellitus based on the PI3K/Akt signaling pathway[J].Journal of Diabetes Research, 2019, 2019:4650906.
[35] HUANG X J, LIU G H, GUO J, et al.The PI3K/AKT pathway in obesity and type 2 diabetes[J].International Journal of Biological Sciences, 2018, 14(11):1483-1496.
[36] ABDEL-MONEIM A, BAKERY H H, ALLAM G.The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus[J].Biomedicine and Pharmacotherapy, 2018, 101:287-292.
[37] YOON M S.The role of mammalian target of rapamycin (mTOR) in insulin signaling[J].Nutrients, 2017, 9(11):1176.
[38] CUI W, XU B, CHEN F, et al. Effects of grape peel phenolics on lipid accumulation in sodium palmitate-treated HepG2 cells. Journal of Functional Foods, 2024, 112: 105923.