Simultaneous detection of three related addictive drugs in milk tea based on colloidal gold immunochromatographic strip

  • XU Peng ,
  • XU Shujuan ,
  • MA Biao ,
  • LI Jiali ,
  • SU Wei ,
  • XU Tianran ,
  • ZHOU Yuxin ,
  • XU Hanyue ,
  • ZHANG Mingzhou
Expand
  • 1(College of Life Sciences, China Jiliang University, Hangzhou 310018, China)
    2(Hangzhou Quickgene Sci-Tech.Co.Ltd., Hangzhou 310002, China)
    3(Wenzhou MeiZhong Medical Laboratory, Wenzhou 325000, China)

Received date: 2023-09-26

  Revised date: 2023-11-15

  Online published: 2024-08-02

Abstract

A rapid and simultaneous lateral flow immunochromatography (LFIC) method was established based on colloidal gold (CG) for testing three addictive drugs in milk tea, including methamphetamine (MET), ketamine (KET), and cocaine (COC).After optimizing the key parameters, such as the concentration of coated antigen, the combination position of the three analytes, and the immunoreaction time, the developed method could be used for the simultaneous identification of three target addictive drays in a milk tea sample with a lower concentration could be tested.The limits of detection of MET, KET, and COC were 1.60, 1.59, and 1.39 ng/mL, respectively.In milk tea samples, the mean recoveries of the three types of mixed reference analytes ranged from 90% to 109% with a relative standard deviation of less than 5%.Briefly, the multiple CG-LFIC method had the advantages of easy operation, fast analysis, high sensitivity, and good specificity.It can be an effective method for simultaneous screening addictive drugs in milk tea and provides promising applications in the bio-detection field.

Cite this article

XU Peng , XU Shujuan , MA Biao , LI Jiali , SU Wei , XU Tianran , ZHOU Yuxin , XU Hanyue , ZHANG Mingzhou . Simultaneous detection of three related addictive drugs in milk tea based on colloidal gold immunochromatographic strip[J]. Food and Fermentation Industries, 2024 , 50(14) : 290 -296 . DOI: 10.13995/j.cnki.11-1802/ts.037497

References

[1] 杨昌彪, 李占彬, 阙云飞, 等.UPLC/MSMS内标法测定火锅食品中5种生物碱和15种喹诺酮类物质[J].食品与发酵工业, 2022, 48(15):288-294.
YANG C B, LI Z B, QUE Y F, et al.Determination of 5 alkaloids and 15 quinolones in hotpot food by UPLC/MSMS with internal standard method[J].Food and Fermentation Industries, 2022, 48(15):288-294.
[2] 舒俊宏. 运动营养食品中可卡因的检测[J].现代食品科技, 2019, 35(4):279-284.
SHU J H.Detection of cocaine in sports nutritional food[J].Modern Food Science and Technology, 2019, 35(4):279-284.
[3] 马姣, 胡娅琳, 赵益侠, 等.减肥保健品非法添加3种化学药物的TLC-Micro FTIR检测[J].中国测试, 2018, 44(5):53-57.
MA J, HU Y L, ZHAO Y X, et al.Determination of three chemical drugs added illegally into anti-obesity and healthcare products by TLC-Micro FTIR method[J].China Measurement & Test, 2018, 44(5):53-57.
[4] 王迪, 杜振霞. 分散液液微萃取-离子迁移-质谱联用方法对饮料中的毒品快速筛查[C]//中国化学会第十一届全国生物医药色谱及相关技术学术交流会(大会特邀报告及墙报)论文摘要集. 井冈山, 2016:88.
[5] 余晓琴, 李澍才. 超高效液相色谱-质谱联用法定量测定奶茶中的3种毒品成分[J]. 食品安全质量检测学报, 2019, 10(16):5517-5522.
YU X Q, LI S C. Quantitative determination of 3 related narcotic substances in milk tea by ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety & Quality, 2019, 10(16):5517-5522.
[6] GLEBA J, KIM J. Determination of morphine, fentanyl and their metabolites in small sample volumes using liquid chromatography tandem mass spectrometry[J]. Journal of Analytical Toxicology, 2020, 44(4):325-330.
[7] LENDOIRO E, JIMÉNEZ-MORIGOSA C, CRUZ A, et al. An LC-MS/MS methodological approach to the analysis of hair for amphetamine-type-stimulant (ATS) drugs, including selected synthetic cathinones and piperazines[J]. Drug Testing and Analysis, 2017, 9(1):96-105.
[8] 罗耀, 张建莹, 黄昌雄, 等. 液相色谱-串联质谱法测定固体及液体药物中27种新型毒品芬太尼类物质[J]. 分析测试学报, 2020, 39(4):427-433.
LUO Y, ZHANG J Y, HUANG C X, et al. Determination of 27 novel fentanyl analogs and metabolites in solid and liquid drugs by liquid chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2020, 39(4):427-433.
[9] LIU Y, FAN Y L, HUANG Z P, et al. Determination of ketamine, methamphetamine and 3, 4-methylenedioxymethamphetamine in human hair by flash evaporation-gas chromatography/mass spectrometry[J]. Journal of Chromatography B, 2020, 1153:122275.
[10] GAI Z R, LI F, YANG X Y. Electrochemiluinescence monitoring the interaction between human serum albumin and amyloid-β peptide[J]. Bioelectrochemistry, 2023, 149:108315.
[11] JI J H, ZHANG Y, WANG J F. Rapid detection of nine synthetic cathinones in blood and urine by direct analysis in real-time-tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry: RCM, 2021, 35(15): e9136.
[12] ANGELINI D J, BIGGS T D, PRUGH A M, et al. Detection of fentanyl and derivatives using a lateral flow immunoassay[J]. Forensic Chemistry, 2021, 23:100309.
[13] DEHGHANNEZHAD A, PAKNEJAD M, RASAEE M J, et al. Development of a nanogold-based immunochromatographic assay for detection of morphine in urine using the Amor-HK16 monoclonal antibody[J]. Hybridoma (2005), 2012, 31(6):411-416.
[14] 张婷婷, 吴健美, 乔宏伟, 等. 毛发中毒品检测技术及其在毒情监测中的应用[J]. 警察技术, 2022(5):19-21.
ZHANG T T, WU J M, QIAO H W, et al. Hair analysis for drug abuse and its application in drug situation monitoring and early warning[J]. Police Technology, 2022(5):19-21.
[15] 侯伟, 张蕾萍, 王继芬, 等. 人体毛发中氯胺酮及其代谢物的超高效液相色谱-串联质谱法检验及含量统计分析[J]. 分析测试学报, 2021, 40(10):1453-1459, 1466.
HOU W, ZHANG L P, WANG J F, et al. Determination and statistical analysis of ketamine and its metabolites in human hair by ultra-performance liquid chromatography coupled with mass spectrometry[J]. Journal of Instrumental Analysis, 2021, 40(10):1453-1459, 1466.
[16] 刘春叶, 王喆, 冯佳铭, 等. 污水流行病学调查辽宁和吉林两省甲基苯丙胺滥用量和流行率[J]. 环境化学, 2018, 37(8):1763-1769.
LIU C Y, WANG Z, FENG J M, et al. Methamphetamine consumption and prevalence in Liaoning and Jilin provinces investigated by sewage epidemiology[J]. Environmental Chemistry, 2018, 37(8):1763-1769.
[17] 张华方, 杨军, 杜鹏, 等. 北京水环境中氯胺酮和去甲氯胺酮的浓度水平[J]. 环境科学, 2016, 37(7):2522-2529.
ZHANG H F, YANG J, DU P, et al. Concentrations of ketamine and norketamine in the water environment in Beijing[J]. Environmental Science, 2016, 37(7):2522-2529.
[18] 邢广旭, 孙雪峰, 赵东, 等. 侧流胶体金免疫试纸快速测定牛奶中的泰乐菌素[J]. 食品与发酵工业, 2022, 48(12):261-266.
XING G X, SUN X F, ZHAO D, et al. Lateral flow colloidal gold immunoassay paper for rapid determination of tylosin in milk[J]. Food and Fermentation Industries, 2022, 48(12):261-266.
[19] 欧爱芬, 罗奕铭, 赵肃清. 联检速测卡快速检测保健食品中他达拉非与西地那非[J]. 食品与发酵工业, 2021, 47(23):258-264.
OU A F, LUO Y M, ZHAO S Q. Research of synchronizating rapid determination of tadalafil and sildenafil in health caring foods[J]. Food and Fermentation Industries, 2021, 47(23):258-264.
[20] PANG Y M, ZHAO S J, LIU Z W, et al. An enhanced immunochromatography assay based on colloidal gold-decorated polydopamine for rapid and sensitive determination of gentamicin in animal-derived food[J]. Food Chemistry, 2022, 387:132916.
[21] POOSINUNTAKUL N, CHANMEE T, PORNTADAVITY S, et al. Silver-enhanced colloidal gold dip strip immunoassay integrated with smartphone-based colorimetry for sensitive detection of cardiac marker troponin I[J]. Scientific Reports, 2022, 12(1):19866.
[22] WANG W, FAN B C, ZHANG X H, et al. Development of a colloidal gold immunochromatographic assay strip using monoclonal antibody for rapid detection of porcine deltacoronavirus[J]. Frontiers in Microbiology, 2023, 13:1074513.
[23] LIU M M, MA B, WANG Y P, et al. Research on rapid detection technology for β2-agonists: Multi-residue fluorescence immunochromatography based on dimeric artificial antigen[J]. Foods, 2022, 11(6):863.
Outlines

/