Enhancing the acid resistance of Escherichia coli by blue light-regulated biofilm key genes

  • WU Jianju ,
  • FENG Shoushuai
Expand
  • (The Key Laboratory of Industrial Biotechnology, Ministry of Educations, School of Biotechnology, Jiangnan University, Wuxi 214122, China)

Received date: 2024-04-17

  Revised date: 2024-04-29

  Online published: 2024-08-21

Abstract

Acidic stress has limited the development of industrial microorganisms during the fermentation process.Fine regulation of biofilm formation is an effective strategy to improve the acid tolerance of Escherichia coli.A dual-plasmid regulatory system based on the EL222 blue light-inducible protein was successfully constructed with an 8.6-fold increase in regulatory efficiency.This dual-plasmid expression system was further used to regulate the expressions of a biofilm formation key regulatory factor CsgD and diguanylate cyclase M (DgcM) proteins.The results indicated that the acid resistance of CsgD and DgcM overexpressed strains was improved by 22.3% and 16.4% under conditions of pH 5.0 and 15 mW/cm2 blue light irradiation.Moreover, the biofilm content was increased by 2.7 and 3.4 times, respectively.The analysis of biofilm composition revealed that the level of polysaccharides and proteins increased, while the soluble microbial products decreased under acid stress.These changes promoted bacterial aggregation, contributing to the formation of a more stable biofilm structure.Quantitative reverse transcription PCR (RT-qPCR) results further showed a significant upregulation in the transcription levels of biofilm formation-related genes.This blue light-regulated system successfully improved the acid resistance of E.coli by controlling key genes for biofilm formation, which will offer potential references and guidance for microbial organic acid fermentation.

Cite this article

WU Jianju , FENG Shoushuai . Enhancing the acid resistance of Escherichia coli by blue light-regulated biofilm key genes[J]. Food and Fermentation Industries, 2024 , 50(15) : 1 -7 . DOI: 10.13995/j.cnki.11-1802/ts.039589

References

[1] GUAN N Z, LI J H, SHIN H D, et al.Microbial response to environmental stresses:From fundamental mechanisms to practical applications[J].Applied Microbiology and Biotechnology, 2017, 101(10):3991-4008.
[2] HALL-STOODLEY L, COSTERTON J W, STOODLEY P.Bacterial biofilms:From the natural environment to infectious diseases[J].Nature Reviews.Microbiology, 2004, 2(2):95-108.
[3] SARENKO O, KLAUCK G, WILKE F M, et al.More than enzymes that make or break cyclic di-GMP-local signaling in the interactome of GGDEF/EAL domain proteins of Escherichia coli[J].mBio, 2017, 8(5):e01639-17.
[4] LINDENBERG S, KLAUCK G, PESAVENTO C, et al.The EAL domain protein YciR acts as a trigger enzyme in a c-di-GMP signalling cascade in E.coli biofilm control[J].The EMBO Journal, 2013, 32(14):2001-2014.
[5] FANG X, GOMELSKY M.A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility[J].Molecular Microbiology, 2010, 76(5):1295-1305.
[6] BROMBACHER E, BARATTO A, DOREL C, et al.Gene expression regulation by the Curli activator CsgD protein:Modulation of cellulose biosynthesis and control of negative determinants for microbial adhesion[J].Journal of Bacteriology, 2006, 188(6):2027-2037.
[7] TAN P, HE L, HUANG Y, et al.Optophysiology:Illuminating cell physiology with optogenetics[J].Physiological Reviews, 2022, 102(3):1263-1325.
[8] LEVSKAYA A, CHEVALIER A A, TABOR J J, et al.Synthetic biology:Engineering Escherichia coli to see light[J].Nature, 2005, 438(7067):441-442.
[9] WANG X, CHEN X J, YANG Y.Spatiotemporal control of gene expression by a light-switchable transgene system[J].Nature Methods, 2012, 9(3):266-269.
[10] PU L, YANG S, XIA A G, et al.Optogenetics manipulation enables prevention of biofilm formation of engineered Pseudomonas aeruginosa on surfaces[J].ACS Synthetic Biology, 2018, 7(1):200-208.
[11] JAYARAMAN P, DEVARAJAN K, CHUA T K, et al.Blue light-mediated transcriptional activation and repression of gene expression in bacteria[J].Nucleic Acids Research, 2016, 44(14):6994-7005.
[12] KIM M J, LIM E S, KIM J S.Enzymatic inactivation of pathogenic and nonpathogenic bacteria in biofilms in combination with chlorine[J].Journal of Food Protection, 2019, 82(4):605-614.
[13] DUBOIS M, GILLES K A, HAMILTON J K, et al.Colorimetric method for determination of sugars and related substances[J].Analytical Chemistry, 1956, 28(3):350-356.
[14] JONES E R, VAN VLIET M T H, QADIR M, et al.Country-level and gridded estimates of wastewater production, collection, treatment and reuse[J].Earth System Science Data, 2021, 13(2):237-254.
[15] DAI T H, GUPTA A, MURRAY C K, et al.Blue light for infectious diseases:Propionibacterium acnes, Helicobacter pylori, and beyond?[J].Drug Resistance Updates, 2012, 15(4):223-236.
[16] XU Y, ZHAO Z, TONG W H, et al.An acid-tolerance response system protecting exponentially growing Escherichia coli[J].Nature Communications, 2020, 11(1):1496.
[17] HU W B, TONG Y J, LIU J J, et al.Improving acid resistance of Escherichia coli base on the CfaS-mediated membrane engineering strategy derived from extreme acidophile[J].Frontiers in Bioengineering and Biotechnology, 2023, 11:1158931.
[18] PFIFFER V, SARENKO O, POSSLING A, et al.Genetic dissection of Escherichia coli’s master diguanylate cyclase DgcE:Role of the N-terminal MASE1 domain and direct signal input from a GTPase partner system[J].PLoS Genetics, 2019, 15(4):e1008059.
[19] 吕菁萍, 李泽龙, 张鹤睿, 等.海洋假交替单胞菌生物膜产ROS特性研究[J].大连理工大学学报, 2021, 61(6):569-575.
LYU J P, LI Z L, ZHANG H R, et al.Study of ROS production characteristics of biofilm by marine Pseudoalteromonas sp[J].Journal of Dalian University of Technology, 2021, 61(6):569-575.
[20] HSUEH Y H, SOMERS E B, WONG A C.Characterization of the CodY gene and its influence on biofilm formation in Bacillus cereus[J].Archives of Microbiology, 2008, 189(6):557-568.
[21] KUNACHEVA C, STUCKEY D C.Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems:A review[J].Water Research, 2014, 61:1-18.
[22] SERRA D O, RICHTER A M, HENGGE R.Cellulose as an architectural element in spatially structured Escherichia coli biofilms[J].Journal of Bacteriology, 2013, 195(24):5540-5554.
[23] 张爱静, 李琳琼, 王鹏杰等. 热胁迫对大肠杆菌细胞膜和膜蛋白的影响[J]. 中国农业科学, 2020, 53(5): 1046-1057.
ZHANG A J, LI L Q, WANG P J, et al. Effects of heat stress on cell membrane and membrane protein of Escherichia coli[J]. Journal of Integrative Agriculture, 2020, 53(5): 1046-1057.
[24] WANG S Y, FLEMING R T, WESTBROOK E M, et al.Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription[J].Journal of Molecular Biology, 2006, 355(4):798-808.
[25] TEPLITSKI M, AL-AGELY A, AHMER B M M.Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium[J].Microbiology, 2006, 152(11):3411-3424.
[26] WEBER H, PESAVENTO C, POSSLING A, et al.Cyclic-di-GMP-mediated signalling within the σ network of Escherichia coli[J].Molecular Microbiology, 2006, 62(4):1014-1034.
[27] MORGAN J L W, STRUMILLO J, ZIMMER J.Crystallographic snapshot of cellulose synthesis and membrane translocation[J].Nature, 2013, 493(7431):181-192.
Outlines

/