[1] XING H L, LI Q Q, ZHAO Y T, et al.Exogenous prolinebooststheco-accumulation ofastaxanthin and biomassin stress-induced Haematococcus pluvialis[J].Bioresource technology, 2023, 369:128488.
[2] 王裕玉, 董浩, 孙爱华, 等.雨生红球藻的营养价值及其在虾蟹饵料中的应用研究进展[J].饲料研究, 2022, 45(18):142-145.
WANG Y Y, DONG H, SUN A H, et al.Research progress on nutritional value of Haematococcus pluvialis and its application in shrimp and crab feed [J].Feed Research, 2022, 45(18):142-145.
[3] YIN Z H, WANG M W, ZENG M Y.Novel Pickering emulsion stabilized by natural fiber polysaccharide-protein extracted from Haematococcus pluvialis residues[J].Food Hydrocolloids, 2023, 134:108048.
[4] WANG M, XU P, LIAO L F, et al.Haematococcus pluvialis extends yeast lifespan and improves Slc25a46 gene knockout-associated mice phenotypic defects[J].Molecular nutrition & food research, 2021, 65(24):e2100086.
[5] 何宛诗, 郑钦生, 陈小艳, 等. 雨生红球藻新型抗氧化肽的制备纯化、鉴定筛选及其对秀丽线虫抗氧化能力的影响. 食品科学, 2023(22):116-125.
HE W S, ZHENG Q S, CHEN X Y, et al. Isolation, identification and evaluation by Caenorhabditis elegans of Haematococcus pluvialis novel antioxidant peptide. Food Science, 2023(22):116-125.
[6] LI L M, WU Y H, ACHEAMPONG A, et al.Red light promotes autotrophic growth of Haematococcus pluvialis with improved carbonic anhydrase activity and CO2 utilization[J].Aquaculture, 2023, 571:739462.
[7] SANZO G D, MEHARIYA S, MARTINO M, et al.Supercritical carbon dioxide extraction of astaxanthin, lutein, and fatty acids from Haematococcus pluvialis microalgae[J].Marine Drugs, 2018, 16(9):334.
[8] RADICE R P, PADULA M C, LIGUORI A, et al.Genetic improvement to obtain specialized Haematococcus pluvialis genotypes for the production of carotenoids, with particular reference to astaxanthin[J].International Journal of Plant Biology, 2023, 14(1):276-285.
[9] ZHANG P W, QIAN C, HUANG J, et al.Suitable natural astaxanthin supplementation with Haematococcus pluvialis improves the physiological function and stress response to air exposure of juvenile red swamp crayfish (Procambarus clarkii)[J].Aquaculture, 2023, 573:739577.
[10] ZHOU A Z, LI X D, ZOU J, et al.Discovery of potential quality markers of Fritillariae thunbergii bulbus in pneumonia by combining UPLC-QTOF-MS, network pharmacology, and molecular docking[J].Molecular diversity, 2024, 28(2):787-804.
[11] PAN H T, XI Z Q, WEI X Q, et al.A network pharmacology approach to predict potential targets and mechanisms of “Ramulus Cinnamomi (cassiae)-Paeonia lactiflora” herb pair in the treatment of chronic pain with comorbid anxiety and depression[J].Annals of Medicine, 2022, 54(1):413-425.
[12] WEI P L, SHANG J J, LIU H X, et al.Molecular mechanisms of Notopterygii rhizoma et radix for treating arrhythmia based on network pharmacology[J].Combinatorial Chemistry & High Throughput Screening, 2023, 26(8):1560-1570.
[13] ZHU W, LI Y H, ZHAO J J, et al.The mechanism of triptolide in the treatment of connective tissue disease-related interstitial lung disease based on network pharmacology and molecular docking[J].Annals of Medicine, 2022, 54(1):541-552.
[14] 《网络药理学评价方法指南》发布[J].中国新药与临床杂志, 2021, 40(6):459.
The publication of “guide to evaluation methods of network pharmacology”[J].Chinese Journal of New Drugs and Clinical Remedies, 2021, 40(6):459.
[15] SEO Y J, JEONG M, LEE K T, et al.Isocyperol, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced inflammatory responses via suppression of the NF-κB and STAT3 pathways and ROS stress in LPS-stimulated RAW 264.7 cells[J].International Immunopharmacology, 2016, 38:61-69.
[16] MU J, CHEN H, YE M Y, et al.Acacetin resists UVA photoaging by mediating the SIRT3/ROS/MAPKs pathway[J].Journal of Cellular and Molecular Medicine, 2022, 26(16):4624 - 4628.
[17] OSIEWACZ H D.Impact of mitochondrial quality control and architecture on organismic aging[J].Biochimica et Biophysica (BBA) Acta- Bioenergetics, 2022, 1863:148599.
[18] AI G H, MENG M, GUO J, et al.Adipose-derived stem cells promote the repair of chemotherapy-induced premature ovarian failure by inhibiting granulosa cells apoptosis and senescence[J].Stem Cell Research & Therapy, 2023, 14(1):75.
[19] IWASAKI K, ABARCA C, AGUAYO-MAZZUCATO C.Regulation of cellular senescence in type 2 diabetes mellitus:From mechanisms to clinical applications[J].Diabetes & Metabolism Journal, 2023, 47(4):441-453.
[20] HONG Y, KIM H J, PARK S, et al.Single cell analysis of human thyroid reveals the transcriptional signatures of aging[J].Endocrinology, 2023, 164(4):bqad029.
[21] BULBIANKOVA D, DÍAZ-PUERTAS R, ÁLVAREZ-MARTÍNEZ F J, et al.Hallmarks and biomarkers of skin senescence:An updated review of skin senotherapeutics[J].Antioxidants, 2023, 12(2):444.
[22] CAO J J, XU M F, ZHU L F, et al.Viaminate ameliorates Propionibacterium acnes-induced acne via inhibition of the TLR2/NF-κB and MAPK pathways in rats[J].Naunyn-Schmiedeberg′s archives of pharmacology, 2023, 396(7):1487-1500.
[23] HAN X Y, CHEN Z Y, YUAN J F, et al.Artemisia annua water extract attenuates DNCB-induced atopic dermatitis by restraining Th2 cell mediated inflammatory responses in BALB/c mice[J].Journal of ethnopharmacology, 2022, 291:115160.
[24] YAN S Y, ZHAO J F, HAN Y Q, et al.The challenges in investigating the pathogenesis of sensitive skin by noninvasive measurements:A systematic review[J].Clinical, Cosmetic and Investigational Dermatology, 2023, 16:237-251.
[25] SUN L Y, ZHAO Q, XIAO Y, et al.Trehalose targets Nrf2 signal to alleviate D-galactose induced aging and improve behavioral ability[J].Biochemical and Biophysical Research Communications, 2020, 521(1):113-119.
[26] NA T Y, KIM G H, OH H J, et al.The trisaccharide raffinose modulates epidermal differentiation through activation of liver X receptor[J].Scientific Reports, 2017, 7(1):43823.
[27] KANWAL F, REN D X, KANWAL W, et al.The potential role of non digestible Raffinose family oligosaccharides as prebiotics[J].Glycobiology, 2023, 33(4):274-288.
[28] GAO X Z, KANG X D, LU H W, et al.Piceatannol suppresses inflammation and promotes apoptosis in rheumatoid arthritis-fibroblast-like synoviocytes by inhibiting the NF-κB and MAPK signaling pathways[J].Molecular Medicine Reports, 2022, 25(5):180.
[29] 李超峰, 吴育萍, 李双双, 等.向日葵籽壳黑色素的分离提取及生物活性研究[J].中国生物工程杂志, 2022, 42(11):88-98.
LI C F, WU Y P, LI S S, et al.Isolation and biological activity of melanin from sunflower seed shell[J].China Biotechnology, 2022, 42(11):88-98.
[30] WEI G Q, SHREYOSREE C, SANAHAN A, et al.Erucamide targets microglia to regulate the retinal angiogenic microenvironment and function as a neurotrophic factor[J].Investigative Ophthalmology & Visual Science, 2022, 63(7):273-318.
[31] KIM I S, JO E K.Inosine:A bioactive metabolite with multimodal actions in human diseases[J].Frontiers in Pharmacology, 2022, 13:1043970.
[32] HARDIANTI B, UMEYAMA L, LI F, et al.Anti-inflammatory compounds moracin O and P from Morus alba Linn.(Sohakuhi) target the NF-κB pathway[J].Molecular Medicine Reports, 2020, 22(6):5385-5391.
[33] CHEN Y, QIU X, YANG J.Comparing the in vitro antitumor, antioxidant and anti-inflammatory activities between two new very long chain polyunsaturated fatty acids, docosadienoic acid (DDA) and docosatrienoic acid (DTA), and docosahexaenoic acid (DHA)[J].Nutrition and Cancer, 2021, 73(9):1697-1707.
[34] KUSIAK A, BRADY G.Bifurcation of signalling in human innate immune pathways to NF-kB and IRF family activation[J].Biochemical Pharmacology, 2022, 205:115246.
[35] YEUNG Y T, AZIZ F, GUERRERO-CASTILLA A, et al.Signaling pathways in inflammation and anti-inflammatory therapies[J].Current Pharmaceutical Design, 2018, 24(14):1449-1484.
[36] KIM M J, YANG K W, YANG E J, et al.Citrus unshiu flower inhibits LPS-induced iNOS and COX-2 via MAPKs in RAW 264.7 macrophage cells[J].Oriental Journal of Chemistry, 2015, 31(4):1915-1922.
[37] SHIN K K, PARK S H, LIM H Y, et al.In vitro anti-photoaging and skin protective effects of Licania macrocarpa cuatrec methanol extract[J].Plants, 2022, 11(10):1383-1403.
[38] GOODMAN M B, SAVAGE-DUNN C. Reciprocal interactions between transforming growth factor beta signaling and collagens: Insights from Caenorhabditis elegans. Developmental Dynamics, 2022, 251(1):47-60.
[39] 洪安澜, 林彤.TRP通道在炎症性皮肤病中的作用[J].中国麻风皮肤病杂志, 2023, 39(2):129-133.
HONG A L, LIN T.Update of the role for TRP channels in inflammatory skin diseases [J].China Journal of Leprosy and Skin Diseases, 2023, 39(2):129-133.
[40] PARTIDA-SANCHEZ S, DESAI B N, SCHWAB A, et al.Editorial:TRP channels in inflammation and immunity [J].Frontiers in Immunology, 2021, 12:684172.
[41] MICHALICK L, KUEBLER W M.TRPV4-a missing link between mechanosensation and immunity[J].Frontiers in immunology, 2020, 11:413.