Optimization of mycelium liquid-state cultivation conditions of Ganoderma sessile and preparation of mycelium-based composite materials

  • ZHONG Zijie ,
  • LI Xueling ,
  • HU Wenfeng ,
  • YANG Meiyan
Expand
  • 1(College of Food Science, South China Agricultural University, Guangzhou 510642, China)
    2(Shenzhen My-Loop Biotechnology Co.Ltd., Shenzhen 518122, China)

Received date: 2023-12-08

  Revised date: 2024-02-08

  Online published: 2024-12-17

Abstract

In this study, the mycelia of Ganoderma sessile were used to prepare mycelium base composites (MBCs), C-MBCs (corn stalks), and H-MBCs (hemp stalks), respectively.To obtain more active mycelium seeds, the liquid cultivation conditions were optimized.The study included the effects of carbon sources, nitrogen sources, initial pH, temperature, G.sessile content, liquid volume, and rotating speed on the mycelial biomass of fermented products.Both C-MBCs and H-MBCs were measured for scanning electron microscope, compressive strength, and thermogravimetric characteristics.Results showed that the best mycelium cultivation medium was 25 g/L corn flour, 14 g/L soybean powder, 3 g/L KH2PO4, and 3 g/L 7H2O·MgSO4.The optimized fermentation conditions were fermentation temperature at 28 ℃, initial pH 5.5, G.sessile content with 5%, liquid volume 150 mL/500 mL flask, and rotating speed 180 r/min.Under the optimized conditions, the mycelial biomass in the cultural broth was 18.73 g/L, which increased by 34%, compared with those before optimization.The compressive strength and thermogravimetric characteristics of C-MBCs and H-MBCs were both better than expanded polystyrene.It’s concluded that this result will provide a reference for the application of MBCs instead of foam plastics in cushioning packaging.

Cite this article

ZHONG Zijie , LI Xueling , HU Wenfeng , YANG Meiyan . Optimization of mycelium liquid-state cultivation conditions of Ganoderma sessile and preparation of mycelium-based composite materials[J]. Food and Fermentation Industries, 2024 , 50(22) : 278 -285 . DOI: 10.13995/j.cnki.11-1802/ts.038205

References

[1] 李文波. 白色污染的现状分析及其绿色化防治[J].当代化工研究, 2022(3):60-62.
LI W B.Present situation analysis of white pollution and its green prevention and control[J].Modern Chemical Research, 2022(3):60-62.
[2] 张丽, 王成龙.降解塑料产业发展趋势研究[J].化学工业, 2022, 40(1):46-52.
ZHANG L, WANG C L.Research report on the development trend of degradable plastics industry[J].Chemical Industry, 2022, 40(1):46-52.
[3] 袁大辉, 孙玲.可降解塑料现状及前景展望[J].橡塑技术与装备, 2022, 48(10):1-5.
YUAN D H, SUN L.Status and prospect of degradable plastics[J].China Rubber/Plastics Technology and Equipment, 2022, 48(10):1-5.
[4] 王集合. 生物包装材料前程远大[J].绿色包装, 2018(1):76-78;83.
WANG J H.Biological packaging materials have a bright future[J].Green Packaging, 2018(1):76-78;83.
[5] 唐小华, 胡斌, 李雪玲, 等.食药用菌菌丝体应用研究进展[J].食用菌学报, 2021, 28(4):116-122.
TANG X H, HU B, LI X L, et al.Research progress on application of mycelium of edible and medicinal fungi[J].Acta Edulis Fungi, 2021, 28(4):116-122.
[6] ISLAM M R, TUDRYN G, BUCINELL R, et al.Mechanical behavior of mycelium-based particulate composites[J].Journal of Materials Science, 2018, 53(24):16371-16382.
[7] 张倩, 孙瑞祥, 席寅生, 等.两种食用菌菌丝体复合材料机械、物理和生物降解特性[J].食用菌学报, 2023, 30(4):88-96.
SUN Q, SUN R X, XI Y S, et al.Mechanical, physical and biodegradation properties of two mycelium-based composites[J].Acta Edulis Fungi, 2023, 30(4):88-96.
[8] 陈晨伟, 丁榕, 彭柳城, 等.外源营养物对菌丝体生物质材料的生长研究及其性能表征[J].农业工程学报, 2021, 37(21):295-302.
CHEN C W, DING R, PENG L C, et al.Effects of exogenous nutrients on the growth of mycelial biomass materials and its characterization[J].Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(21):295-302.
[9] 丁嘉耀, 赵婕, 张建峰. 预处理玉米秸秆提高糙皮侧耳菌丝基缓冲材料性能的研究[J]. 菌物学报, 2023, 42(12): 2470-2480.
DING J Y, ZHAO J, ZHANG J F. Improving the performance of Pleurotus ostreatus mycelium-based cushioning materials by corn straw pretreatment[J]. Mycosystema, 2023, 42(12): 2470-2480.
[10] AIDUANG W, KUMLA J, SRINUANPAN S, et al.Mechanical, physical, and chemical properties of mycelium-based composites produced from various lignocellulosic residues and fungal species[J].Journal of Fungi, 2022, 8(11):1125.
[11] AIDUANG W, CHANTHALUCK A, KUMLA J, et al.Amazing fungi for eco-friendly composite materials:A comprehensive review[J].Journal of Fungi, 2022, 8(8):842.
[12] HOENERLOH A, OZKAN D, SCOTT J.Multi-organism composites:Combined growth potential of mycelium and bacterial cellulose[J].Biomimetics, 2022, 7(2):55.
[13] 闫薇, 于兰芳, 李晓, 等.基于菌丝体的生物质保温材料研究现状[J].林产工业, 2019, 56(12):34-37.
YAN W, YU L F, LI X, et al.Research status of biomass thermal insulation materials based on fungal mycelium[J].China Forest Products Industry, 2019, 56(12):34-37.
[14] PELLETIER M G, HOLT G A, WANJURA J D, et al.Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative[J].Industrial Crops and Products, 2019, 139:111533.
[15] 国家药典委员会. 中华人民共和国药典-一部: 2020年版[M]. 北京: 中国医药科技出版社, 2020.
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China[M]. Beijing: The medicine science and technology press of China, 2020.
[16] 刘莉莹, 王洪庆, 刘超, 等.树灵芝中三萜类成分及其保肝作用研究[J].天然产物研究与开发, 2017, 29(4):584-589.
LIU L Y, WANG H Q, LIU C, et al.Triterpenoids of Ganoderma sessile and their hepatoprotective activities[J].Natural Product Research and Development, 2017, 29(4):584-589.
[17] 刘蔚, 王征, 丰来.灵芝菌发酵紫甘薯渣获得可溶性膳食纤维的工艺优化[J].食品与发酵工业, 2012, 38(2):131-134.
LIU W, WANG Z, FENG L.Optimization of fermentation conditions with purple sweet potato slag for soluble dietary fiber by Ganoderma lucidum[J].Food and Fermentation Industries, 2012, 38(2):131-134.
[18] 赵丽媛, 祝芙蓉, 黄梓芮, 等.灵芝活性成分及其对肠道菌群和机体代谢影响的研究进展[J].食品与发酵工业, 2022, 48(11):297-302.
ZHAO L Y, ZHU F R, HUANG Z R, et al.Research progress on active ingredients of Ganoderma and their effects on intestinal microbiota and organism metabolism[J].Food and Fermentation Industries, 2022, 48(11):297-302.
[19] 张影, 孟宪瑶, 杨云丽, 等.灵芝双向发酵液对于HaCaT细胞中波紫外线损伤的修复研究[J].食品与发酵工业, 2022, 48(24):220-225.
ZHANG Y, MENG X Y, YANG Y L, et al.Repair of UVB light damage in HaCaT cells by Ganoderma lucidum bidirectional fermentation broth[J].Food and Fermentation Industries, 2022, 48(24):220-225.
[20] 张影, 孟宪瑶, 李忠峰, 等.灵芝双向发酵液冻干粉抑制环氧化酶-2及抗氧化活性的研究[J].食品与发酵工业, 2023, 49(1):47-52.
ZHANG Y, MENG X Y, YANG Y L, et al.Inhibition of cyclooxygenase-2 and antioxidant activity of lyophilized powder of Canoderma lucidum bidirectional fermentation broth[J].Food and Fermentation Industries, 2023, 49(1):47-52.
[21] 赵雪. 液体发酵灵芝菌丝体生物活性的研究[D]. 长春: 吉林农业大学, 2017.
ZHAO X. Study on biological activity of Ganoderma lucidum mycelium by liquid fermentation[D]. Changchun: Jilin Agricultural University, 2017.
[22] 朱戎, 陈向东, 兰进. 药用真菌液体发酵研究进展[J]. 中药材, 2003, 26(1):55-57.
ZHU R, CHEN X D, LAN J. Advance in the study on liquid fermentation for medicinal fungi[J]. Journal of Chinese Medicinal Materials, 2003, 26(1):55-57.
[23] 于庆宇, 于子淇, 龚笛翔, 等. 平菇菌丝纤维生长速度的影响因素及用作缓冲包装材料的试验研究[J]. 化纤与纺织技术, 2022, 51(3):19-21.
YU Q Y, YU Z Q, GONG D X, et al. Experimental study on the factors affecting the growth rate of mycelium fiber of Pleurotus ostreatus and its use as cushioning packaging material[J]. Chemical Fiber & Textile Technology, 2022, 51(3):19-21.
[24] 夏慧敏,张显权.真菌菌丝-木屑复合材料的物理力学性能——以灵芝菌、木耳菌为例[J].东北林业大学学报, 2018, 46(4):63-66.
XIA H M, ZHANG X Q.Mechanical properties of fungal hyphae/wood particle composites—Taking Ganoderma lucidum and Auricularia auricular as example[J].Journal of Northeast Forestry University, 2018, 46(4):63-66.
[25] HSIEH C, TSENG M H, LIU C J.Production of polysaccharides from Ganoderma lucidum (CCRC 36041) under limitations of nutrients[J].Enzyme and Microbial Technology, 2006,38(1-2):109-117.
[26] 闫薇, 于兰芳, 曹春红, 等.菌丝体生物泡沫材料防火特性研究[J].消防科学与技术, 2021, 40(8):1239-1242.
YAN W, YU L F, CAO C H, et al.Study on fire performance of mycelium bio-foam[J].Fire Science and Technology, 2021, 40(8):1239-1242.
Outlines

/