[1] LIANG Y H, CHEN F B, WANG K P, et al.Base editors:Development and applications in biomedicine[J].Frontiers of Medicine, 2023, 17(3):359-387.
[2] ZHOU L, PENG R X, ZHANG R, et al.The applications of CRISPR/Cas system in molecular detection[J].Journal of Cellular and Molecular Medicine, 2018, 22(12):5807-5815.
[3] CHO S, SHIN J, CHO B K.Applications of CRISPR/cas system to bacterial metabolic engineering[J].International Journal of Molecular Sciences, 2018, 19(4):1089.
[4] WANG Y, LIU Y, ZHENG P, et al.Microbial base editing:A powerful emerging technology for microbial genome engineering[J].Trends in Biotechnology, 2021, 39(2):165-180.
[5] 余传照, 莫健新, 赵鑫, 等.基于CRISPR/Cas系统的DNA碱基编辑技术及其在生物医学和农业中的应用[J].生物工程学报, 2021, 37(9):3071-3087.
YU C Z, MO J X, ZHAO X, et al.CRISPR/Cas-mediated DNA base editing technology and its application in biomedicine and agriculture[J].Chinese Journal of Biotechnology, 2021, 37(9):3071-3087.
[6] WU W Y, YANG Y H, LEI H T.Progress in the application of CRISPR From gene to base editing[J].Medicinal Research Reviews, 2019, 39(2):665-683.
[7] KIM J S.Precision genome engineering through adenine and cytosine base editing[J].Nature Plants, 2018, 4(3):148-151.
[8] ZHAO D D, LI J, LI S W, et al.Glycosylase base editors enable C-to-A and C-to-G base changes[J].Nature Biotechnology, 2021, 39(1):35-40.
[9] ANZALONE A V, RANDOLPH P B, DAVIS J R, et al.Search-and-replace genome editing without double-strand breaks or donor DNA[J].Nature, 2019, 576(7785):149-157.
[10] ZHANG X H, ZHU B Y, CHEN L, et al.Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J].Nature Biotechnology, 2020, 38(7):856-860.
[11] KOMOR A C, KIM Y B, PACKER M S, et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J].Nature, 2016, 533(7603):420-424.
[12] NISHIDA K, ARAZOE T, YACHIE N, et al.Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J].Science, 2016, 353(6305):aaf8729.
[13] ZENG H Z, YUAN Q C, PENG F, et al.A split and inducible adenine base editor for precise in vivo base editing[J].Nature Communications, 2023, 14(1):5573.[PubMed]
[14] CHEN Y Y, WANG Z P, NI H W, et al.CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis[J].Science China.Life Sciences, 2017, 60(5):520-523.
[15] ZHENG K, WANG Y, LI N, et al.Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion[J].Communications Biology, 2018, 1:32.
[16] GU T N, ZHAO S Q, PI Y S, et al.Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase[J].Chemical Science, 2018, 9(12):3248-3253.
[17] BANNO S, NISHIDA K, ARAZOE T, et al.Deaminase-mediated multiplex genome editing in Escherichia coli[J].Nature Microbiology, 2018, 3(4):423-429.
[18] ZHAO Y W, TIAN J Z, ZHENG G S, et al.Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces[J].Science China Life Sciences, 2020, 63(7):1053-1062.
[19] CHEN W Z, ZHANG Y, ZHANG Y F, et al.CRISPR/Cas9-based Genome Editing in Pseudomonas aeruginosa and Cytidine Deaminase-Mediated Base Editing in Pseudomonas Species[J].iScience, 2018, 6:222-231.
[20] KOMOR A C, ZHAO K T, PACKER M S, et al.Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity[J].Science Advances, 2017, 3(8):eaao4774.
[21] KIM Y B, KOMOR A C, LEVY J M, et al.Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions[J].Nature Biotechnology, 2017, 35(4):371-376.
[22] LIANG P P, SUN H W, SUN Y, et al.Effective gene editing by high-fidelity base editor 2 in mouse zygotes[J].Protein & Cell, 2017, 8(8):601-611.
[23] WANG X, LI J N, WANG Y, et al.Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion[J].Nature Biotechnology, 2018, 36(10):946-949.
[24] HU J H, MILLER S M, GEURTS M H, et al.Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J].Nature, 2018, 556(7699):57-63.
[25] NISHIMASU H, SHI X, ISHIGURO S, et al.Engineered CRISPR-Cas9 nuclease with expanded targeting space[J].Science, 2018, 361(6408):1259-1262.
[26] MA Y Q, ZHANG J Y, YIN W J, et al.Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells[J].Nature Methods, 2016, 13(12):1029-1035.
[27] HESS G T, FRÉSARD L, HAN K, et al.Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells[J].Nature Methods, 2016, 13(12):1036-1042.
[28] GAUDELLI N M, KOMOR A C, REES H A, et al.Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J].Nature, 2017, 551(7681):464-471.
[29] SRETENOVIC S, GREEN Y, WU Y C, et al.Genome-and transcriptome-wide off-target analyses of a high-efficiency adenine base editor in tomato[J].Plant Physiology, 2023, 193(1):291-303.
[30] YANG S P, ZHU X X, QU Z X, et al.Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping[J].In Vitro Cellular & Developmental Biology-Animal, 2023, 59(4):241-255.
[31] RICHTER M F, ZHAO K T, ETON E, et al.Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity[J].Nature Biotechnology, 2020, 38(7):883-891.
[32] HUA K, TAO X P, ZHU J K.Expanding the base editing scope in rice by using Cas9 variants[J].Plant Biotechnology Journal, 2019, 17(2):499-504.
[33] KANG B C, YUN J Y, KIM S T, et al.Precision genome engineering through adenine base editing in plants[J].Nature Plants, 2018, 4(7):427-431.
[34] ZHANG Y, ZHANG H Y, WANG Z P, et al.Programmable adenine deamination in bacteria using a Cas9-adenine-deaminase fusion[J].Chemical Science, 2020, 11(6):1657-1664.
[35] TONG Y J, WHITFORD C M, ROBERTSEN H L, et al.Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST[J].Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(41):20366-20375.
[36] LI C, ZONG Y, WANG Y P, et al.Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion[J].Genome Biology, 2018, 19(1):59.
[37] QIN W, LU X C, LIU Y X, et al.Precise A·T to G·C base editing in the zebrafish genome[J].BMC Biology, 2018, 16(1):139.
[38] KOBLAN L W, DOMAN J L, WILSON C, et al.Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J].Nature Biotechnology, 2018, 36(9):843-846.
[39] YANG L, ZHANG X H, WANG L R, et al.Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants[J].Protein & Cell, 2018, 9(9):814-819.
[40] KURT I C, ZHOU R H, IYER S, et al.CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells[J].Nature Biotechnology, 2021, 39(1):41-46.
[41] SUN N X, ZHAO D D, LI S W, et al.Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity[J].Molecular Therapy, 2022, 30(7):2452-2463.
[42] DONG X X, YANG C, MA Z Z, et al.Enhancing glycosylase base-editor activity by fusion to transactivation modules[J].Cell Reports, 2022, 40(3):111090.
[43] YANG C, DONG X X, MA Z Z, et al.Pioneer factor improves CRISPR-based C-to-G and C-to-T base editing[J].Advanced Science, 2022, 9(26):e2202957.
[44] TESTA L C, MUSUNURU K.Base editing and prime editing:Potential therapeutic options for rare and common diseases[J].BioDrugs, 2023, 37(4):453-462.
[45] FU Y D, HE X Y, GAO X D, et al.Prime editing:Current advances and therapeutic opportunities in human diseases[J].Science Bulletin, 2023, 68(24):3278-3291.
[46] CHEN P J, HUSSMANN J A, YAN J, et al.Enhanced prime editing systems by manipulating cellular determinants of editing outcomes[J].Cell, 2021, 184(22):5635-5652.
[47] GAO P, LYU Q, GHANAM A R, et al.Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression[J].Genome Biology, 2021, 22(1):83.
[48] ZHU G N, ZHU H L.Modified gene editing systems:Diverse bioengineering tools and crop improvement[J].Frontiers in Plant Science, 2022, 13:847169.
[49] LU Y M, TIAN Y F, SHEN R D, et al.Precise genome modification in tomato using an improved prime editing system[J].Plant Biotechnology Journal, 2021, 19(3):415-417.
[50] TONG Y J, JØRGENSEN T S, WHITFORD C M, et al.A versatile genetic engineering toolkit for E.coli based on CRISPR-prime editing[J].Nature Communications, 2021, 12(1):5206.
[51] JIN S, LIN Q P, LUO Y F, et al.Genome-wide specificity of prime editors in plants[J].Nature Biotechnology, 2021, 39(10):1292-1299.
[52] KWEON J, YOON J K, JANG A H, et al.Engineered prime editors with PAM flexibility[J].Molecular Therapy, 2021, 29(6):2001-2007.
[53] LIU P P, LIANG S Q, ZHENG C W, et al.Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice[J].Nature Communications, 2021, 12(1):2121.
[54] GRÜNEWALD J, ZHOU R H, LAREAU C A, et al.A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J].Nature Biotechnology, 2020, 38(7):861-864.
[55] SAKATA R C, ISHIGURO S, MORI H, et al.Base editors for simultaneous introduction of C-to-T and A-to-G mutations[J].Nature Biotechnology, 2020, 38(7):865-869.
[56] LIANG Y H, XIE J K, ZHANG Q J, et al.AGBE:A dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns[J].Nucleic Acids Research, 2022, 50(9):5384-5399.
[57] XIE J K, HUANG X Y, WANG X, et al.ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems[J].BMC Biology, 2020, 18(1):131.
[58] LI C, ZHANG R, MENG X B, et al.Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J].Nature Biotechnology, 2020, 38(7):875-882.
[59] XU R F, KONG F N, QIN R Y, et al.Development of an efficient plant dual cytosine and adenine editor[J].Journal of Integrative Plant Biology, 2021, 63(9):1600-1605.
[60] 张雅玲, 王锌和, 李构思, 等.新型DNA碱基编辑器的研究进展[J].华南农业大学学报, 2022, 43(6):1-16;193.
ZHANG Y L, WANG X H, LI G S, et al.Research advances in novel DNA base editors[J].Journal of South China Agricultural University, 2022, 43(6):1-16;193.
[61] LI J Y, ZHANG C, HE Y B, et al.Plant base editing and prime editing:The current status and future perspectives[J].Journal of Integrative Plant Biology, 2023, 65(2):444-467.