Research progress of novel genome editing technology base editor

  • LI Huanhuan ,
  • SONG Xin ,
  • XIA Yongjun ,
  • WANG Guangqiang ,
  • AI Lianzhong ,
  • XIONG Zhiqiang
Expand
  • (School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

Received date: 2024-02-08

  Revised date: 2024-03-19

  Online published: 2024-12-27

Abstract

Base editing is a new type of genome editing method, which combines the cutting function of CRISPR/Cas system and the editing function of base deaminase.It can achieve efficient and accurate base editing of genomic sites without double-stranded DNA break and exogenous repair templates, and realize multi-site editing, which greatly enriches the existing genome editing techniques.According to the fusion of different deaminases, the base editor is mainly divided into adenine base editor, cytosine base editor, prime editor, glycosylase base editor and bifunctional base editor.This paper reviews the basic principles, development process and application scope of different types of base editors, evaluates their technical advantages and limitations, and looks forward to the future development direction based on the latest research, in order to provide a powerful tool for the basic and applied research of food science, such as food microorganisms, foodborne pathogens and fermented food.

Cite this article

LI Huanhuan , SONG Xin , XIA Yongjun , WANG Guangqiang , AI Lianzhong , XIONG Zhiqiang . Research progress of novel genome editing technology base editor[J]. Food and Fermentation Industries, 2024 , 50(23) : 358 -367 . DOI: 10.13995/j.cnki.11-1802/ts.038859

References

[1] LIANG Y H, CHEN F B, WANG K P, et al.Base editors:Development and applications in biomedicine[J].Frontiers of Medicine, 2023, 17(3):359-387.
[2] ZHOU L, PENG R X, ZHANG R, et al.The applications of CRISPR/Cas system in molecular detection[J].Journal of Cellular and Molecular Medicine, 2018, 22(12):5807-5815.
[3] CHO S, SHIN J, CHO B K.Applications of CRISPR/cas system to bacterial metabolic engineering[J].International Journal of Molecular Sciences, 2018, 19(4):1089.
[4] WANG Y, LIU Y, ZHENG P, et al.Microbial base editing:A powerful emerging technology for microbial genome engineering[J].Trends in Biotechnology, 2021, 39(2):165-180.
[5] 余传照, 莫健新, 赵鑫, 等.基于CRISPR/Cas系统的DNA碱基编辑技术及其在生物医学和农业中的应用[J].生物工程学报, 2021, 37(9):3071-3087.
YU C Z, MO J X, ZHAO X, et al.CRISPR/Cas-mediated DNA base editing technology and its application in biomedicine and agriculture[J].Chinese Journal of Biotechnology, 2021, 37(9):3071-3087.
[6] WU W Y, YANG Y H, LEI H T.Progress in the application of CRISPR From gene to base editing[J].Medicinal Research Reviews, 2019, 39(2):665-683.
[7] KIM J S.Precision genome engineering through adenine and cytosine base editing[J].Nature Plants, 2018, 4(3):148-151.
[8] ZHAO D D, LI J, LI S W, et al.Glycosylase base editors enable C-to-A and C-to-G base changes[J].Nature Biotechnology, 2021, 39(1):35-40.
[9] ANZALONE A V, RANDOLPH P B, DAVIS J R, et al.Search-and-replace genome editing without double-strand breaks or donor DNA[J].Nature, 2019, 576(7785):149-157.
[10] ZHANG X H, ZHU B Y, CHEN L, et al.Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J].Nature Biotechnology, 2020, 38(7):856-860.
[11] KOMOR A C, KIM Y B, PACKER M S, et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J].Nature, 2016, 533(7603):420-424.
[12] NISHIDA K, ARAZOE T, YACHIE N, et al.Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J].Science, 2016, 353(6305):aaf8729.
[13] ZENG H Z, YUAN Q C, PENG F, et al.A split and inducible adenine base editor for precise in vivo base editing[J].Nature Communications, 2023, 14(1):5573.[PubMed]
[14] CHEN Y Y, WANG Z P, NI H W, et al.CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis[J].Science China.Life Sciences, 2017, 60(5):520-523.
[15] ZHENG K, WANG Y, LI N, et al.Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion[J].Communications Biology, 2018, 1:32.
[16] GU T N, ZHAO S Q, PI Y S, et al.Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase[J].Chemical Science, 2018, 9(12):3248-3253.
[17] BANNO S, NISHIDA K, ARAZOE T, et al.Deaminase-mediated multiplex genome editing in Escherichia coli[J].Nature Microbiology, 2018, 3(4):423-429.
[18] ZHAO Y W, TIAN J Z, ZHENG G S, et al.Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces[J].Science China Life Sciences, 2020, 63(7):1053-1062.
[19] CHEN W Z, ZHANG Y, ZHANG Y F, et al.CRISPR/Cas9-based Genome Editing in Pseudomonas aeruginosa and Cytidine Deaminase-Mediated Base Editing in Pseudomonas Species[J].iScience, 2018, 6:222-231.
[20] KOMOR A C, ZHAO K T, PACKER M S, et al.Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity[J].Science Advances, 2017, 3(8):eaao4774.
[21] KIM Y B, KOMOR A C, LEVY J M, et al.Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions[J].Nature Biotechnology, 2017, 35(4):371-376.
[22] LIANG P P, SUN H W, SUN Y, et al.Effective gene editing by high-fidelity base editor 2 in mouse zygotes[J].Protein & Cell, 2017, 8(8):601-611.
[23] WANG X, LI J N, WANG Y, et al.Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion[J].Nature Biotechnology, 2018, 36(10):946-949.
[24] HU J H, MILLER S M, GEURTS M H, et al.Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J].Nature, 2018, 556(7699):57-63.
[25] NISHIMASU H, SHI X, ISHIGURO S, et al.Engineered CRISPR-Cas9 nuclease with expanded targeting space[J].Science, 2018, 361(6408):1259-1262.
[26] MA Y Q, ZHANG J Y, YIN W J, et al.Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells[J].Nature Methods, 2016, 13(12):1029-1035.
[27] HESS G T, FRÉSARD L, HAN K, et al.Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells[J].Nature Methods, 2016, 13(12):1036-1042.
[28] GAUDELLI N M, KOMOR A C, REES H A, et al.Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J].Nature, 2017, 551(7681):464-471.
[29] SRETENOVIC S, GREEN Y, WU Y C, et al.Genome-and transcriptome-wide off-target analyses of a high-efficiency adenine base editor in tomato[J].Plant Physiology, 2023, 193(1):291-303.
[30] YANG S P, ZHU X X, QU Z X, et al.Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping[J].In Vitro Cellular & Developmental Biology-Animal, 2023, 59(4):241-255.
[31] RICHTER M F, ZHAO K T, ETON E, et al.Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity[J].Nature Biotechnology, 2020, 38(7):883-891.
[32] HUA K, TAO X P, ZHU J K.Expanding the base editing scope in rice by using Cas9 variants[J].Plant Biotechnology Journal, 2019, 17(2):499-504.
[33] KANG B C, YUN J Y, KIM S T, et al.Precision genome engineering through adenine base editing in plants[J].Nature Plants, 2018, 4(7):427-431.
[34] ZHANG Y, ZHANG H Y, WANG Z P, et al.Programmable adenine deamination in bacteria using a Cas9-adenine-deaminase fusion[J].Chemical Science, 2020, 11(6):1657-1664.
[35] TONG Y J, WHITFORD C M, ROBERTSEN H L, et al.Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST[J].Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(41):20366-20375.
[36] LI C, ZONG Y, WANG Y P, et al.Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion[J].Genome Biology, 2018, 19(1):59.
[37] QIN W, LU X C, LIU Y X, et al.Precise A·T to G·C base editing in the zebrafish genome[J].BMC Biology, 2018, 16(1):139.
[38] KOBLAN L W, DOMAN J L, WILSON C, et al.Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J].Nature Biotechnology, 2018, 36(9):843-846.
[39] YANG L, ZHANG X H, WANG L R, et al.Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants[J].Protein & Cell, 2018, 9(9):814-819.
[40] KURT I C, ZHOU R H, IYER S, et al.CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells[J].Nature Biotechnology, 2021, 39(1):41-46.
[41] SUN N X, ZHAO D D, LI S W, et al.Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity[J].Molecular Therapy, 2022, 30(7):2452-2463.
[42] DONG X X, YANG C, MA Z Z, et al.Enhancing glycosylase base-editor activity by fusion to transactivation modules[J].Cell Reports, 2022, 40(3):111090.
[43] YANG C, DONG X X, MA Z Z, et al.Pioneer factor improves CRISPR-based C-to-G and C-to-T base editing[J].Advanced Science, 2022, 9(26):e2202957.
[44] TESTA L C, MUSUNURU K.Base editing and prime editing:Potential therapeutic options for rare and common diseases[J].BioDrugs, 2023, 37(4):453-462.
[45] FU Y D, HE X Y, GAO X D, et al.Prime editing:Current advances and therapeutic opportunities in human diseases[J].Science Bulletin, 2023, 68(24):3278-3291.
[46] CHEN P J, HUSSMANN J A, YAN J, et al.Enhanced prime editing systems by manipulating cellular determinants of editing outcomes[J].Cell, 2021, 184(22):5635-5652.
[47] GAO P, LYU Q, GHANAM A R, et al.Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression[J].Genome Biology, 2021, 22(1):83.
[48] ZHU G N, ZHU H L.Modified gene editing systems:Diverse bioengineering tools and crop improvement[J].Frontiers in Plant Science, 2022, 13:847169.
[49] LU Y M, TIAN Y F, SHEN R D, et al.Precise genome modification in tomato using an improved prime editing system[J].Plant Biotechnology Journal, 2021, 19(3):415-417.
[50] TONG Y J, JØRGENSEN T S, WHITFORD C M, et al.A versatile genetic engineering toolkit for E.coli based on CRISPR-prime editing[J].Nature Communications, 2021, 12(1):5206.
[51] JIN S, LIN Q P, LUO Y F, et al.Genome-wide specificity of prime editors in plants[J].Nature Biotechnology, 2021, 39(10):1292-1299.
[52] KWEON J, YOON J K, JANG A H, et al.Engineered prime editors with PAM flexibility[J].Molecular Therapy, 2021, 29(6):2001-2007.
[53] LIU P P, LIANG S Q, ZHENG C W, et al.Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice[J].Nature Communications, 2021, 12(1):2121.
[54] GRÜNEWALD J, ZHOU R H, LAREAU C A, et al.A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J].Nature Biotechnology, 2020, 38(7):861-864.
[55] SAKATA R C, ISHIGURO S, MORI H, et al.Base editors for simultaneous introduction of C-to-T and A-to-G mutations[J].Nature Biotechnology, 2020, 38(7):865-869.
[56] LIANG Y H, XIE J K, ZHANG Q J, et al.AGBE:A dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns[J].Nucleic Acids Research, 2022, 50(9):5384-5399.
[57] XIE J K, HUANG X Y, WANG X, et al.ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems[J].BMC Biology, 2020, 18(1):131.
[58] LI C, ZHANG R, MENG X B, et al.Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J].Nature Biotechnology, 2020, 38(7):875-882.
[59] XU R F, KONG F N, QIN R Y, et al.Development of an efficient plant dual cytosine and adenine editor[J].Journal of Integrative Plant Biology, 2021, 63(9):1600-1605.
[60] 张雅玲, 王锌和, 李构思, 等.新型DNA碱基编辑器的研究进展[J].华南农业大学学报, 2022, 43(6):1-16;193.
ZHANG Y L, WANG X H, LI G S, et al.Research advances in novel DNA base editors[J].Journal of South China Agricultural University, 2022, 43(6):1-16;193.
[61] LI J Y, ZHANG C, HE Y B, et al.Plant base editing and prime editing:The current status and future perspectives[J].Journal of Integrative Plant Biology, 2023, 65(2):444-467.
Outlines

/