[1] 林炎娟, 周丹蓉, 叶新福, 等. 李子保鲜技术研究进展[J]. 东南园艺, 2017, 5(1):43-49.
LIN Y J, ZHOU D R, YE X F, et al. Research progress of preservation technology of plum[J]. Southeast Horticulture, 2017, 5(1):43-49.
[2] ZHANG J, LIU J, XIE J, et al. Biocontrol efficacy of Pichia Membranaefaciens and Kloeckera apiculata against Monilinia fructicola and their ability to induce phenylpropanoid pathway in plum fruit[J]. Biological Control, 2019, 129:83-91.
[3] 凡先芳, 张婕, 姚世响, 等. 1-MCP和戊唑醇处理对青脆李果实贮藏期病害和品质的影响[J]. 食品科学, 2016, 37(24):292-298.
FAN X F, ZHANG J, YAO S X, et al. Effects of 1-MCP and tebuconazole treatments on disease and quality of “qingcui” plum fruits during storage[J]. Food Science, 2016, 37(24):292-298.
[4] 蔡蜨, 李心丹, 邓丽莉, 等. 抗菌肽PAF26对采后李果实褐腐菌的抑菌效果及机理[J]. 食品科学, 2020, 41(23):221-227.
CAI D, LI X D, DENG L L, et al. Antibacterial effect and mechanism of antimicrobial peptide PAF26 on Monilinia fructicola in postharvest plums[J]. Food Science, 2020, 41(23):221-227.
[5] 张晓瑜, 张晓宇, 王艳伟, 等. 过氧乙酸对采后李果实褐腐菌抑制作用的研究[J]. 湖北农业科学, 2015, 54(15):3659-3661.
ZHANG X Y, ZHANG X Y, WANG Y W, et al. The inhibition effect of peroxyacetic acid against Monilinia fructicola on harvested plum fruit[J]. Hubei Agricultural Sciences, 2015, 54(15):3659-3661.
[6] LIN Y X, LIN Y F, LIN M S, et al. Propyl gallate postharvest treatment improves the storability of longans by regulating the metabolisms of respiratory and disease-resistance substances[J]. Postharvest Biology and Technology, 2023, 206:112556.
[7] 曾昌平, 汪于波, 李佳艳, 等. 阿拉伯半乳聚糖处理对采后青脆李果实贮藏特性的影响[J]. 食品工业科技, 2023, 44(17):383-391.
ZENG C P, WANG Y B, LI J Y, et al. Effects of Arabinogalactan treatment on storage characteristic of postharvest qingcui plum[J]. Science and Technology of Food Industry, 2023, 44(17):383-391.
[8] LESZCZUK A, SZCZUKA E, WYDRYCH J, et al. Changes in Arabinogalactan proteins (AGPs) distribution in apple (Malus x domestica) fruit during senescence[J]. Postharvest Biology and Technology, 2018, 138:99-106.
[9] MARERI L, ROMI M, CAI G. Arabinogalactan proteins: Actors or spectators during abiotic and biotic stress in plants?[J]. Plant Biosystems-an International Journal Dealing with All Aspects of Plant Biology, 2019, 153(1):173-185.
[10] LESZCZUK A, PIECZYWEK P M, GRYTA A, et al. Immunocytochemical studies on the distribution of Arabinogalactan proteins (AGPs) as a response to fungal infection in Malus x domestica fruit[J]. Scientific Reports, 2019, 9(1):17428.
[11] 令阳, 邓丽莉, 姚世响, 等. L-半胱氨酸处理对采后李果实褐腐菌的抑制作用[J]. 食品科学, 2019, 40(9):256-261.
LING Y, DENG L L, YAO S X, et al. Inhibitory effect of L-cysteine against Monilinia fructicola on postharvest plum fruit[J]. Food Science, 2019, 40(9):256-261.
[12] ZHANG Z Q, QIN G Z, LI B Q, et al. Effect of cinnamic acid for controlling gray mold on table grape and its possible mechanisms of action[J]. Current Microbiology, 2015, 71(3):396-402.
[13] MUÑOZ A, LÓPEZ-GARCÍA B, MARCOS J F. Comparative study of antimicrobial peptides to control Citrus postharvest decay caused by Penicillium digitatum[J]. Journal of Agricultural and Food Chemistry, 2007, 55(20):8170-8176.
[14] ZHANG W N, ZHAO X Y, SUN C D, et al. Phenolic composition from different loquat (Eriobotrya japonica Lindl.) cultivars grown in China and their antioxidant properties[J]. Molecules, 2015, 20(1):542-555.
[15] 陈力维, 令阳, 邓丽莉, 等. L-半胱氨酸处理对采后青脆李果实苯丙烷代谢的影响[J]. 农业工程学报, 2020, 36(13):257-263.
CHEN L W, LING Y, DENG L L, et al. Effects of L-cysteine treatment on phenylpropanoid metabolism of postharvest “Qingcui” plum fruit[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13):257-263.
[16] 柴秀伟, 孔蕊, 李宝军, 等. 一氧化氮对苹果果实愈伤苯丙烷代谢的影响及生理机制分析[J]. 西北植物学报, 2022, 42(4):619-627.
CHAI X W, KONG R, LI B J, et al. Effect of nitric oxide on phenylpropanoid metabolism in healing of apple fruit and analysis of its physiological mechanism[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(4):619-627.
[17] 张菊华, 王伟, 林树花, 等. 丁香、五味子及壳聚糖复合保鲜剂对蓝莓贮藏品质及抗病酶活的影响[J]. 中国食品学报, 2017, 17(12):139-148.
ZHANG J H, WANG W, LIN S H, et al. Effect of cloves, Schisandra chinensis and chitosan compound preservative on storage quality and disease-resistant enzyme activity of blueberries[J]. Journal of Chinese Institute of Food Science and Technology, 2017, 17(12):139-148.
[18] 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007.
[19] 高媛, 马帅, 代敏, 等. 果蔬酚酸生物合成及代谢调控研究进展[J]. 食品科学, 2018, 39(9):286-293.
GAO Y, MA S, DAI M, et al. Progress in research on the biosynthesis pathway and metabolic regulation of phenolic acids[J]. Food Science, 2018, 39(9):286-293.
[20] 刘业霞, 付玲, 艾希珍, 等. 嫁接对辣椒次生代谢的影响及其与青枯病抗性的关系[J]. 中国农业科学, 2013, 46(14):2963-2969.
LIU Y X, FU L, AI X Z, et al. Effect of grafting on secondary metabolism and its relationship with bacterial wilt resistance in pepper[J]. Scientia Agricultura Sinica, 2013, 46(14):2963-2969.
[21] LI Y F, JI N N, ZUO X X, et al. PpMYB308 is involved in Pichia guilliermondii-induced disease resistance against Rhizopus rot by activating the phenylpropanoid pathway in peach fruit[J]. Postharvest Biology and Technology, 2023, 195:112115.
[22] 丁志祥, 姚永红, 敬廷桃, 等. 植物诱导抗病性及其在果蔬上的初步应用概述[J]. 南方农业, 2016, 10(10):70-73.
DING Z X, YAO Y H, JING T T, et al. Plant induced disease resistance and its preliminary application in fruits and vegetables [J]. South China Agriculture, 2016, 10(10):70-73.
[23] 郭欣, 林育钊, 林河通, 等. 壳聚糖处理对西番莲果实感病指数、抗病相关酶活性和抗病物质含量的影响[J]. 食品科学, 2021, 42(15):206-212.
GUO X, LIN Y Z, LIN H T, et al. Effect of chitosan treatment on disease index, disease resistant-related enzyme activities and disease resistance-related substance contents in Passiflora caerulea L. fruit during storage[J]. Food Science, 2021, 42(15):206-212.
[24] BIN DUAN, REYMICK O O, LIU Z G, et al. Citral enhances disease resistance in postharvest Citrus fruit through inducing jasmonic acid pathway and accumulating phenylpropanoid compounds[J]. Postharvest Biology and Technology, 2024, 207:112633.
[25] 陈燕玲, 岑光莉, 孙婷婷, 等. 植物几丁质酶和β-1, 3-葡聚糖酶及其协同抗病性研究进展[J]. 农业生物技术学报, 2022, 30(7):1394-1411.
CHEN Y L, CEN G L, SUN T T, et al. Progress on plant chitinase and β-1, 3-glucanase and their synergistic function in disease resistance[J]. Journal of Agricultural Biotechnology, 2022, 30(7):1394-1411.