A review of effect of ultra-low temperature freezing on ice crystal formation and quality of aquatic products

  • JIA Shiliang ,
  • LIU Yongqing ,
  • ZHAO Yating ,
  • YIN Yuhao ,
  • ZHOU Xuxia ,
  • DING Yuting
Expand
  • 1(College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China)
    2(Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China)
    3(National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China)
    4(School of Food and Health, Beijing Technology and Business University, Beijing 100048, China)

Received date: 2024-02-23

  Revised date: 2024-04-16

  Online published: 2024-12-30

Abstract

Aquatic products possess various characteristics, including high moisture content, elevated endogenous enzyme activity, abundant protein content, and delicate muscle tissue.However, these attributes render them susceptible to diminished freshness or even spoilage shortly after being captured.Freezing is a prevalent technique utilized to preserve the freshness of aquatic products.Nevertheless, the formation of ice crystals during the freezing process can harm the cell structure of aquatic products, resulting in quality deterioration, such as protein and lipid oxidation, muscle texture softening, and discoloration.Currently, with the continuous development of ultra-low temperature freezing technology, the size of ice crystals in frozen aquatic products can be effectively controlled, thereby effectively delaying the quality deterioration of frozen aquatic products.This review mainly summarizes the principle and influencing factors of ice crystal formation in the ultra-low temperature freezing process of aquatic products, the impact of ice crystals on the quality of aquatic products, and the detection methods and control technologies of ice crystals, providing a reference for the development of new freezing technologies for frozen aquatic products.

Cite this article

JIA Shiliang , LIU Yongqing , ZHAO Yating , YIN Yuhao , ZHOU Xuxia , DING Yuting . A review of effect of ultra-low temperature freezing on ice crystal formation and quality of aquatic products[J]. Food and Fermentation Industries, 2024 , 50(24) : 362 -372 . DOI: 10.13995/j.cnki.11-1802/ts.038945

References

[1] 梅俊, 许振琨, 郁慧洁, 等. 冷链物流中海水鱼的腐败机制及保鲜技术研究进展[J]. 食品与生物技术学报, 2022, 41(7):84-99.
MEI J, XU Z K, YU H J, et al. Research progress on spoilage mechanism and preservation technology of marine fish in cold chain logistics[J]. Journal of Food Science and Biotechnology, 2022, 41(7):84-99.
[2] FAO. The State of World Fisheries and Aquaculture 2018: Meeting the Sustainable Development Goals[M]. Rome: Food & Agriculture Organization, 2018.
[3] 郭丽萍. 拟穴青蟹软壳蟹的冻结方法及其在冻藏过程中的品质变化[D]. 宁波: 宁波大学, 2020.
GUO L P. Freezing method of soft-shell crab of Scylla paramamosain and its quality changes during frozen storage[D]. Ningbo: Ningbo University, 2020.
[4] 罗江美, 赵茜, 赵健茹, 等. 冰晶生长对冷冻水产品品质影响及新型冷冻方式研究进展[J].现代食品科技, 2024(2):366-373.
LUO J M, ZHAO X, ZHAO J R. Research progress on the effect of ice crystal growth on the quality of frozen aquatic products and innovative freezing methods[J]. Modern Food Science and Technology, 2024(2):366-373.
[5] 张亚瑾, 焦阳. 冷冻和解冻技术在水产品中的应用研究进展[J]. 食品与机械, 2021, 37(1):215-221;236.
ZHANG Y J, JIAO Y. Research status and prospect of freezing and thawing technologies of aquatic products[J]. Food & Machinery, 2021, 37(1):215-221;236.
[6] BAO Y L, ERTBJERG P, ESTÉVEZ M, et al. Freezing of meat and aquatic food: Underlying mechanisms and implications on protein oxidation[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(6):5548-5569.
[7] TIAN J, WALAYAT N, DING Y T, et al. The role of trifunctional cryoprotectants in the frozen storage of aquatic foods: Recent developments and future recommendations[J]. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(1):321-339.
[8] 唐君言, 邵双全, 徐洪波, 等. 食品速冻方法与模拟技术研究进展[J]. 制冷学报, 2018, 39(6):1-9.
TANG J Y, SHAO S Q, XU H B, et al. Progress in research on the food quick-freezing method and simulation technology[J]. Journal of Refrigeration, 2018, 39(6):1-9.
[9] 曾善明. 变温平面网带速冻机的能量分析及实验研究[D]. 天津: 天津商业大学, 2012.
ZENG S M. Energy analysis and experimental study of variable temperature plane mesh belt quick freezer[D]. Tianjin: Tianjin University of Commerce, 2012.
[10] 贾世亮, 丁娇娇, 杨月, 等. 水产品速冻保鲜技术研究进展[J]. 食品与发酵工业, 2022, 48(11):324-331.
JIA S L, DING J J, YANG Y, et al. Research advances in quick-freezing preservation technologies of aquatic products[J]. Food and Fermentation Industries, 2022, 48(11):324-331.
[11] 尹蕾丽. 冷冻对鲍鱼肌肉质地的影响及其机理的研究[D]. 上海: 上海海洋大学, 2020.
YIN L L. Effect of freezing on muscle texture of abalone and its mechanism[D]. Shanghai: Shanghai Ocean University, 2020.
[12] 杨作苗. 液氮速冻方式保持金鲳鱼肌肉品质的研究[D]. 湛江: 广东海洋大学, 2022.
YANG Z M. Study on keeping the muscle quality of golden pomfret by quick freezing with liquid nitrogen[D]. Zhanjiang: Guangdong Ocean University, 2022.
[13] WANG Y, MIYAZAKI R, SAITOU S, et al. The effect of ice crystals formations on the flesh quality of frozen horse mackerel (Trachurus japonicus)[J]. Journal of Texture Studies, 2018, 49(5):485-491.
[14] 谢晶, 谭明堂, 范敏浩. 冰晶的形成和影响因素及其对水产品品质的影响[J]. 粮食与油脂, 2023, 36(9):1-6.
XIE J, TAN M T, FAN M H. Formation and influencing factors of ice crystals and impact on the quality of aquatic products[J]. Cereals & Oils, 2023, 36(9):1-6.
[15] ZHU Z W, ZHOU Q Y, SUN D W. Measuring and controlling ice crystallization in frozen foods: A review of recent developments[J]. Trends in Food Science & Technology, 2019, 90:13-25.
[16] 崔自成, 黄东, 赵日晶, 等. 水产品冷冻品质影响因素[J]. 食品工程, 2022(1):12-15.
CUI Z C, HUANG D, ZHAO R J, et al. Factors affecting of freezing quality about aquatic products[J]. Food Engineering, 2022(1):12-15.
[17] 许子雄, 李保国, 罗权权. 速冻食品中冰晶的研究进展[J]. 包装与食品机械, 2018, 36(2):63-67.
XU Z X, LI B G, LUO Q Q. Progress in research of ice crystals in fast frozen food[J]. Packaging and Food Machinery, 2018, 36(2):63-67.
[18] TAN M T, MEI J, XIE J. The formation and control of ice crystal and its impact on the quality of frozen aquatic products: A review[J]. Crystals, 2021, 11(1):68.
[19] LI C, GAO X, LI Z G. Surface energy-mediated multistep pathways for heterogeneous ice nucleation[J]. The Journal of Physical Chemistry C, 2018, 122(17):9474-9479.
[20] 薛磊, 刘爱国, 刘园等. 冰淇淋冰晶体再结晶的抑制作用研究进展[J]. 食品工业科技, 2023, 44(23):394-402.
XUE L, LIU A G, LIU Y, et al. Research progress on inhibition of recrystallization of ice cream crystals[J]. Science and Technology of Food Industry,2023, 44(23):394-402.
[21] KUMAR P K, RASCO B A, TANG J M, et al. State/phase transitions, ice recrystallization, and quality changes in frozen foods subjected to temperature fluctuations[J]. Food Engineering Reviews, 2020, 12(4):421-451.
[22] 谭明堂, 王金锋, 谢晶. 水产品中冰晶重结晶机理及控制方法的研究进展[J]. 食品科学, 2021, 42(19):343-349.
TAN M T, WANG J F, XIE J. Progress in the mechanism and control methods of ice recrystallization in frozen aquatic products[J]. Food Science, 2021, 42(19):343-349.
[23] 蒋沛, 火晓越, 刘宝林, 等. 细胞低温保存过程中冰晶成核的研究进展[J]. 制冷学报, 2020, 41(2):159-166.
JIANG P, HUO X Y, LIU B L, et al. Ice nucleation during cell cryopreservation: A review[J]. Journal of Refrigeration, 2020, 41(2):159-166.
[24] 矫佳伟, 王天娜, 李晓燕, 等. 静电场辅助技术在食品冷冻中的研究进展[J]. 冷藏技术, 2023, 46(2):47-51.
JIAO J W, WANG T N, LI X Y, et al. Progress of electrostatic field-assisted technology in food freezing[J]. Journal of Refrigeration Technology, 2023, 46(2):47-51.
[25] 刘承灏, 董佳佳, 罗玲, 等. 电磁场辅助低温处理对肉品质影响的研究进展[J]. 食品研究与开发, 2023, 44(13):219-224.
LIU C H, DONG J J, LUO L, et al. Effects of electromagnetic field-assisted low-temperature treatment on meat quality[J]. Food Research and Development, 2023, 44(13):219-224.
[26] ZHANG Y M, ERTBJERG P. On the origin of thaw loss: Relationship between freezing rate and protein denaturation[J]. Food Chemistry, 2019, 299:125104.
[27] LIU S L, ZENG X H, ZHANG Z Y, et al. Effects of immersion freezing on ice crystal formation and the protein properties of snakehead (Channa argus)[J]. Foods, 2020, 9(4):411.
[28] 李秀霞, 刘孝芳, 刘宏影, 等. 超声波辅助冷冻与低温速冻对海鲈鱼冰晶形态及冻藏期间鱼肉肌原纤维蛋白结构的影响[J]. 中国食品学报, 2021, 21(10):169-176.
LI X X, LIU X F, LIU H Y, et al. Effects of ultrasound-assisted freezing and cryogenic quick freezing on ice crystal morphology and myofibrin structure of sea bass (Lateolabrax japonicus) during frozen storage[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(10):169-176.
[29] 索原杰, 宣晓婷, 崔燕, 等. 超声波辅助冻结在水产品及肉类产品中的应用研究进展及解冻机制[J]. 生物加工过程, 2018, 16(3):78-83.
SUO Y J, XUAN X T, CUI Y, et al. Application of ultrasonic-assisted freezing and thawing technique for aquatic and meat products[J]. Chinese Journal of Bioprocess Engineering, 2018, 16(3):78-83.
[30] LUO X Y, LI J L, YAN W L, et al. Physicochemical changes of MTGase cross-linked surimi gels subjected to liquid nitrogen spray freezing[J]. International Journal of Biological Macromolecules, 2020, 160:642-651.
[31] ZHANG B, CAO H J, WEI W Y, et al. Influence of temperature fluctuations on growth and recrystallization of ice crystals in frozen peeled shrimp (Litopenaeus vannamei) pre-soaked with carrageenan oligosaccharide and xylooligosaccharide[J]. Food Chemistry, 2020, 306:125641.
[32] 孙志利, 张洁玲, 陈小宝, 等. 温度波动对冻藏南美白对虾品质的影响[J]. 食品与发酵工业, 2024, 50(4):246-252.
SUN Z L, ZHANG J L, CHEN X B, et al. Effects of temperature fluctuation on the quality of frozen Penaeus vannamei[J]. Food and Fermentation Industries,2024, 50(4):246-252.
[33] JIANG Q Q, NAKAZAWA N, HU Y Q, et al. Changes in quality properties and tissue histology of lightly salted tuna meat subjected to multiple freeze-thaw cycles[J]. Food Chemistry, 2019, 293:178-186.
[34] 向迎春, 吴丹, 黄佳奇, 等. 冻藏过程中冰晶对水产品品质影响的研究现状[J]. 食品研究与开发, 2018, 39(12):187-193.
XIANG Y C, WU D, HUANG J Q, et al. The current research progress of ice crystals acting on the quality of seafood during freezing storage[J]. Food Research and Development, 2018, 39(12):187-193.
[35] 边楚涵, 谢晶. 冰晶对冻结水产品品质的影响及抑制措施[J]. 包装工程, 2022, 43(3):105-112.
BIAN C H, XIE J. Effects of ice crystal on frozen aquatic products and its inhibition measures[J]. Packaging Engineering, 2022, 43(3):105-112.
[36] YANG F, JING D T, YU D W, et al. Differential roles of ice crystal, endogenous proteolytic activities and oxidation in softening of obscure pufferfish (Takifugu obscurus) fillets during frozen storage[J]. Food Chemistry, 2019, 278:452-459.
[37] 陈怡璇, 焦阳. 冻藏及解冻过程对水产品品质的影响[J]. 食品安全质量检测学报, 2019, 10(2):306-311.
CHEN Y X, JIAO Y. Effects of frozen preservation and thawing on the quality changes of aquatic products[J]. Journal of Food Safety & Quality, 2019, 10(2):306-311.
[38] 苏日耶姆·尼加提, 魏亚博, 邓小蓉, 等. 不冻液冻结对白斑狗鱼冻融稳定性的影响[J]. 食品工业, 2022, 43(8):15-20.
NIJIATI Suriyemu, WEI Y B, DENG X R, et al. Effect of refrigerant freezing on freeze-thaw stability of Esox lucius[J]. The Food Industry, 2022, 43(8):15-20.
[39] 田继源. 温度波动对冻藏三文鱼品质的影响[D]. 天津: 天津商业大学, 2020.
TIAN J Y. Effect of temperature fluctuation on the quality of frozen salmon[D]. Tianjin: Tianjin University of Commerce, 2020.
[40] LUO X Y, HUANG K, NIU Y X, et al. Effects of freezing methods on physicochemical properties, protein/fat oxidation and odor characteristics of surimi gels with different cross-linking degrees[J]. Food Chemistry, 2024, 432:137268.
[41] 廖锦晗, 陈季旺, 谭玲, 等. 冻结方式对中华鲟脂质氧化和肌纤维微观结构的影响[J]. 食品科学, 2023, 44(15):113-120.
LIAO J H, CHEN J W, TAN L, et al. Effects of freezing methods on lipid oxidation and microstructure of muscle fibers in Acipenser sinensis[J]. Food Science, 2023, 44(15):113-120.
[42] 杨巨鹏, 胡远辉, 吕春霞, 等. 不同解冻方式对液氮冻结养殖大黄鱼品质特性的影响[J]. 食品工业科技, 2020, 41(6):259-264; 271.
YANG J P, HU Y H, LV C X, et al. Effects of different thawing methods on the quality characteristics of cultured large yellow croaker (Pseudosciaena crocea) after liquid nitrogen treatment[J]. Science and Technology of Food Industry, 2020, 41(6):259-264; 271.
[43] ZHANG B, ZHAO J L, CHEN S J, et al. Influence of trehalose and alginate oligosaccharides on ice crystal growth and recrystallization in whiteleg shrimp (Litopenaeus vannamei) during frozen storage with temperature fluctuations[J]. International Journal of Refrigeration, 2019, 99:176-185.
[44] SUN Q X, ZHANG H H, YANG X Q, et al. Insight into muscle quality of white shrimp (Litopenaeus vannamei) frozen with static magnetic-assisted freezing at different intensities[J]. Food Chemistry, 2022, 17:100518.
[45] 邱爽. 超声波辅助冷冻对美国红鱼贮藏品质及蛋白质氧化变性的影响[D]. 锦州: 渤海大学, 2020.
QIU S. Effects of ultrasonic-assisted freezing on storage quality and protein oxidation denaturation of American red fish[D]. Jinzhou: Bohai University, 2020.
[46] 栾兰兰. 冷冻带鱼冰晶生长预测模型及分形维数品质评价体系的建立[D]. 杭州: 浙江大学, 2018.
LUAN L L. Prediction model of ice crystal growth of frozen hairtail and establishment of fractal dimension quality evaluation system[D]. Hangzhou: Zhejiang University, 2018.
[47] WANG H L, SHI W Z, WANG X C. Establishment of quality evaluation method for frozen Tilapia (Oreochromis niloticus) fillets stored at different temperatures based on fractal dimension[J]. Journal of Food Processing and Preservation, 2022, 46(4): e16421.
[48] 李桢桢, 尹明雨, 王红丽, 等. 水产品肌肉组织微观结构变化及其检测方法研究进展[J]. 食品科学, 2023, 44(9):278-286.
LI Z Z, YIN M Y, WANG H L, et al. Microstructural change of muscle tissues of aquatic products and methods for its detection: A review[J]. Food Science, 2023, 44(9):278-286.
[49] SHI L, YANG T, XIONG G Q, et al. Influence of frozen storage temperature on the microstructures and physicochemical properties of pre-frozen perch (Micropterus salmoides)[J]. LWT, 2018, 92:471-476.
[50] 李阳, 白根朋, 潘一玲, 等. 冷冻-解冻肌原纤维蛋白结构评价技术研究进展[J]. 食品安全质量检测学报, 2023, 14(15):1-10.
LI Y, BAI G P, PAN Y L, et al. Research progress in evaluation technology of structural characteristics of frozen-thawed myofibrillar proteins[J]. Journal of Food Safety & Quality, 2023, 14(15):1-10.
[51] XU B G, ZHANG M, BHANDARI B, et al. Infusion of CO2 in a solid food: A novel method to enhance the low-frequency ultrasound effect on immersion freezing process[J]. Innovative Food Science & Emerging Technologies, 2016, 35:194-203.
[52] WANG W X, BU Y, LI W Z, et al. Effects of nano freezing-thawing on myofibrillar protein of Atlantic salmon fillets: Protein structure and label-free proteomics[J]. Food Chemistry, 2024, 442:138369.
[53] SUN Q X, ZHAO X X, ZHANG C, et al. Ultrasound-assisted immersion freezing accelerates the freezing process and improves the quality of common carp (Cyprinus carpio) at different power levels[J]. LWT, 2019, 108:106-112.
[54] 卢照, 魏慧欣, 陈霞, 等. 透射电子显微镜样品的制备方法及技术综述[J]. 科学技术与工程, 2023, 23(19):8039-8049.
LU Z, WEI H X, CHEN X, et al. Review of preparation methods and techniques of TEM samples[J]. Science Technology and Engineering, 2023, 23(19):8039-8049.
[55] BAO Y L, WANG K Y, YANG H X, et al. Protein degradation of black carp (Mylopharyngodon piceus) muscle during cold storage[J]. Food Chemistry, 2020, 308:125576.
[56] MA T T, WANG Q, WEI P Y, et al. EGCG-gelatin biofilm improved the protein degradation, flavor and micromolecule metabolites of tilapia fillets during chilled storage[J]. Food Chemistry, 2022, 375:131662.
[57] GUO T H, HUANG P H, HSIEH C W, et al. Effects on the quality in using freezing equipment (weak oscillating magnetic field) on hybrid giant tiger grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) fillets[J]. Journal of Agriculture and Food Research, 2024, 15:101002.
[58] KOBAYASHI R, KIMIZUKA N, WATANABE M, et al. The effect of supercooling on ice structure in tuna meat observed by using X-ray computed tomography[J]. International Journal of Refrigeration, 2015, 60:270-277.
[59] KALITA A, MROZEK-MCCOURT M, KALDAWI T F, et al. Microstructure and crystal order during freezing of supercooled water drops[J]. Nature, 2023, 620(7974):557-561.
[60] 吕美雯. β-环状糊精/卵白蛋白复合抗冻剂对鲌鱼的抗冻保护作用研究[D]. 武汉: 华中农业大学, 2021.
(LÜ/LV/LU/LYU) M W. Study on the antifreeze protection of β-cyclodextrin/ovalbumin compound antifreeze for Culter[D]. Wuhan: Huazhong Agricultural University, 2021.
[61] FENG S H, YI J Y, MA Y C, et al. Study on the ice crystals growth under pectin gels with different crosslinking strengths by modulating the degree of amidation in HG domain[J]. Food Chemistry, 2023, 428:136758.
[62] LI J Q, XIA K X, LI Y, et al. Influence of freezing–thawing cycle on water dynamics of turbot flesh assessed by low-field nuclear magnetic resonance and magnetic resonance imaging[J]. International Journal of Food Engineering, 2018, 14(1): 20170273.
[63] 刘宏影. 超声波辅助冷冻与低温速冻对海鲈鱼冰晶形成及品质特性的影响[D]. 锦州: 渤海大学, 2020.
LIU H Y. Effects of ultrasonic-assisted freezing and low-temperature quick freezing on ice crystal formation and quality characteristics of sea bass[D]. Jinzhou: Bohai University, 2020.
[64] 李苑, 王丽平, 李钰金, 等. 水产品冻结贮藏中冰晶的形成及控制研究进展[J]. 食品科学, 2016, 37(19):277-282.
LI Y, WANG L P, LI Y J, et al. A review of the formation and control of ice crystals in aquatic products during freezing storage[J]. Food Science, 2016, 37(19):277-282.
[65] PREGO R, FIDALGO L G, SARAIVA J A, et al. Impact of prior high-pressure processing on lipid damage and volatile amines formation in mackerel muscle subjected to frozen storage and canning[J]. LWT, 2021, 135:109957.
[66] 程丽娜. 超高压冷冻中压力及冷冻因素不同作用模式下虾蛋白质变性的研究[D]. 广州: 华南理工大学, 2017.
CHENG L N. Study on protein denaturation of shrimp under different action modes of pressure and freezing factors in ultra-high pressure freezing[D]. Guangzhou: South China University of Technology, 2017.
[67] LI D M, ZHU Z W, SUN D W. Effects of freezing on cell structure of fresh cellular food materials: A review[J]. Trends in Food Science & Technology, 2018, 75:46-55.
[68] 侯倩, 丁林欢, 张虹虹, 等. 磁场辅助冷冻技术在食品中的应用研究进展[J]. 食品工业科技,2023, 44(22):360-367.
HOU Q, DING L H, ZHANG H H, et al. Advance on the application of magnetic field-assisted freezing technology in food[J]. Science and Technology of Food Industry,2023, 44(22):360-367.
[69] LENG D M, ZHANG H N, TIAN C Q, et al. The effect of magnetic field on the quality of channel catfish under two different freezing temperatures[J]. International Journal of Refrigeration, 2022, 140:49-56.
[70] 杨冰, 齐子修, 许瑞红, 等. 静磁场辅助冷冻对鮰鱼肉品质的影响[J]. 食品研究与开发, 2023, 44(6):13-20.
YANG B, QI Z X, XU R H, et al. Effect of static magnetic field-assisted freezing on the quality of Ictalurus punctatus[J]. Food Research and Development, 2023, 44(6):13-20.
[71] 于淑池, 周海英. 复合无磷保水剂对冷冻金鲳鱼片的保水效果[J]. 食品工业, 2020, 41(1):120-124.
YU S C, ZHOU H Y. The effect of compound phosphorus-free water retaining agent on frozen golden pompano fillets[J]. The Food Industry, 2020, 41(1):120-124.
[72] 李桂敏, 赵春青, 窦容容, 等. 复合无磷保水剂对反复冻融鲟鱼片理化特性及微观结构的影响[J]. 食品科学, 2022, 43(12):87-93.
LI G M, ZHAO C Q, DOU R R, et al. Effects of non-phosphate water-retaining agents on the physicochemical and microstructure properties of sturgeon fillets subjected to repeated freeze-thaw cycles[J]. Food Science, 2022, 43(12):87-93.
[73] 陈文飞. 抗冻剂与冻结方式对冻煮小龙虾虾仁品质的影响研究[D]. 武汉: 华中农业大学, 2022.
CHEN W F. Study on the influence of antifreeze and freezing methods on the quality of frozen crayfish shrimp[D]. Wuhan: Huazhong Agricultural University, 2022.
[74] HE Z Y, LIU K, WANG J J. Bioinspired materials for controlling ice nucleation, growth, and recrystallization[J]. Accounts of Chemical Research, 2018, 51(5):1082-1091.
[75] 史羽瑶, 郑尧, 王红丽, 等. 抗冻蛋白对冷冻虾夷扇贝闭壳肌持水性及质构特性的影响[J]. 食品科学, 2022, 43(10):22-28.
SHI Y Y, ZHENG Y, WANG H L, et al. Effect of antifreeze protein on water-holding capacity and texture of frozen scallop (Patinopecten yessoensis) adductor muscle[J]. Food Science, 2022, 43(10):22-28.
Outlines

/