Effect of culture temperature on division cycle of Bifidobacterium longum subsp. infantis B8762

  • YANG Zhan ,
  • YAO Guoqiang ,
  • LIU Kailong ,
  • ZHANG Xiaoyuan ,
  • PEI Qilin ,
  • LI Min ,
  • ZHANG Heping
Expand
  • (Key Laboratory of Dairy Biotechnology and Engineering of Ministry of Education, Key Laboratory of Dairy Processing of Ministry of Agriculture and Rural Affairs, Key Laboratory of Dairy Biotechnology and Engineering of Inner Mongolia Autonomous Region, School of Inner Mongolia Agricultural University, Huhhot 010018, China)

Received date: 2024-01-22

  Revised date: 2024-03-07

  Online published: 2025-02-14

Abstract

In the proliferation culture of Bifidobacterium, despite sufficient nutrients, the growth is found to be constrained, emphasizing the crucial exploration of its division cycle.This study focused on Bifidobacterium longum subsp.infantis B8762, employing fluorescent probes to label bacterial cells and utilizing flow cytometry to investigate the division process and membrane integrity under different temperatures.Results demonstrated that, when labelled with 10 μmol/L fluorescent dye, the strain exhibited robust growth conditions, meeting the criteria for division process assessment.Moreover, variations in the distribution of cell populations across different generations under various culture conditions indicated ongoing bacterial division, with asynchronous division among different generations.Notably, at elevated temperatures, the population of the 6th generation increased by 142.31% compared to 37 ℃.The physiological state of the strain was significantly influenced by the cultivation temperature, as evidenced by a 168.82% increase in membrane integrity loss at higher temperatures.This research unveils the fluorescent signal changes and cellular activity differences during the proliferation and division process of Bifidobacterium, providing theoretical guidance for the industrial production of highly active lactic acid bacteria.

Cite this article

YANG Zhan , YAO Guoqiang , LIU Kailong , ZHANG Xiaoyuan , PEI Qilin , LI Min , ZHANG Heping . Effect of culture temperature on division cycle of Bifidobacterium longum subsp. infantis B8762[J]. Food and Fermentation Industries, 2025 , 51(2) : 52 -58 . DOI: 10.13995/j.cnki.11-1802/ts.038658

References

[1] JIAN Y P, ZHANG D, LIU M D, et al.The impact of gut microbiota on radiation-induced enteritis[J].Frontiers in Cellular and Infection microbiology, 2021, 11:586392.
[2] WANG Y, WANG J H, LI H H, et al.Antioxidant effects of Bifidobacterium longum T37a in mice weight loss and aging model induced by D-galactose[J].BMC Microbiology, 2023, 23(1):103.
[3] LAURSEN M F, SAKANAKA M, VON BURG N, et al.Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut[J].Nature microbiology, 2021, 6(11):1367-1382.
[4] SOLIŚ G, GUEIMONDE M.The gut microbiota in infants:Focus on Bifidobacterium[J].Microorganisms, 2023, 11(2):537.
[5] 李文均, 陈瑛, 田新朋, 等.《伯杰氏鉴定细菌学手册》和“伯杰氏国际系统微生物学学会”历史回顾、发展现状及未来展望[J].微生物学报, 2023, 63(5):1714-1723.
LI W J, CHEN Y, TIAN X P, et al.Bergey’s manual of determinative bacteriology and Bergey’s international society for microbial systematics(BISMiS):Past, present and future[J].Acta Microbiologica Sinica, 2023, 63(5):1714-1723.
[6] GOODFELLOW M, KAMPFER P, BUSSE H J, et al.Bergey’s Manual of Systematic Bacteriology[M].New York:Springer Science Business Media, 2012:33-2028.
[7] CAYRON J, DEDIEU-BERNE A, LESTERLIN C.Bacterial filaments recover by successive and accelerated asymmetric divisions that allow rapid post-stress cell proliferation[J].Molecular Microbiology, 2023, 119(2):237-251.
[8] 李娜. 细长聚球藻PCC 7942中CcdR蛋白调控细胞生长和分裂的分子机制研究[D].济南:山东师范大学, 2023.
LI N.Study on the molecular mechanism of CcdR protein regulating cell growth and division in Polycoccus elongatus PCC 7942[D].Jinan:Shandong Normal University, 2023.
[9] 洪歆怡. 细菌细胞周期与其关键蛋白的单细菌水平多参数定量关系研究[D].厦门:厦门大学, 2020.
HONG X Y.Multi-parameter quantitative relationship between bacterial cell cycle and single bacterial levels of key proteins[D].Xiamen:Xiamen University, 2020.
[10] DING Q, MA D L, LIU G Q, et al.Light-powered Escherichia coli cell division for chemical production[J].Nature Communications, 2020, 11(1):2262.
[11] OSELLA M, NUGENT E, COSENTINO LAGOMARSINO M.Concerted control of Escherichia coli cell division[J].Proceedings of the National Academy of Sciences, 2014, 111(9):3431-3435.
[12] GANUSOV V V, PILYUGIN S S, DE BOER R J, et al.Quantifying cell turnover using CFSE data[J].Journal of Immunological Methods, 2005, 298(1-2):183-200.
[13] CHUNG S, KIM S H, SEO Y, et al.Quantitative analysis of cell proliferation by a dye dilution assay:Application to cell lines and cocultures[J].Cytometry Part A, 2017, 91(7):704-712.
[14] LIESCHKE E, WANG Z L, CHANG C, et al.Flow cytometric single cell-based assay to simultaneously detect cell death, cell cycling, DNA content and cell senescence[J].Cell Death & Differentiation, 2022, 29(5):1004-1012.
[15] LYONS A B, BLAKE S J, DOHERTY K V.Flow cytometric analysis of cell division by dilution of CFSE and related dyes[J].Current protocols in cytometry, 2013, 64(1):9.11.1-9.11.12.
[16] CHEN S W, NIU H Y, WU Y F, et al.Influence of lactic acid on cell cycle progressions in Lactobacillus bulgaricus during batch culture[J].Applied Biochemistry and Biotechnology, 2021, 193(3):912-924.
[17] 邓颖. 基于流式细胞术的SYTO 9/PI细菌活性判定方法优化及其机理[D].广州:暨南大学, 2020.
DENG Y.Optimization and mechanism of bacterial activity determination method of SYTO 9/PI based on flow cytometry[D].Guangzhou:Jinan University, 2020.
Outlines

/