Self-assembled immobilized polyphosphate kinase for ATP and GTP synthesis

  • XU Ruirui ,
  • YANG Fengling ,
  • SUN Xiaoyuan ,
  • LU Jie ,
  • WANG Yang ,
  • KANG Zhen ,
  • LI Jianghua
Expand
  • 1(Science Center for Future Foods, Jiangnan University, Wuxi 214122, China)
    2(Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China)
    3(Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China)

Received date: 2024-01-15

  Revised date: 2024-03-12

  Online published: 2025-02-14

Abstract

Polyphosphate kinase (PPK) can utilize widely distributed, cost-effective, and stable polyphosphate as phosphate donors for the synthesis of ATP and GTP.The latter provides essential energy for cells and participates in the synthesis of numerous phosphate-containing important compounds.This study aimed to utilize new synthetic biology techniques to efficiently and inexpensively synthesize ATP and GTP through polyphosphate kinase catalysis.Firstly, based on the analysis of the catalytic capabilities of different PPK families towards various substrates, DrPPK2 belonging to the PPK family 2 and originating from Deinococcus radiodurans was selected.Its activity in both synthesizing ATP and GTP was confirmed.Subsequently, optimization of pH, Mg2+ in the buffer, and temperature significantly improved the efficiency of GTP synthesis, with a maximum conversion rate exceeding 92%.To simplify the catalytic process and reduce production costs, the self-assembling tag CipA was added to achieve the self-assembly immobilization of DrPPK2.High-purity protein could be obtained through centrifugation, enabling enzyme reuse with a conversion rate greater than 90%, and an effective repetition efficiency exceeding 10 times.This study provides a convenient, efficient, and easily scalable self-assembling immobilization system for ATP and GTP biosynthesis, offering insights into the synthesis of other phosphate-containing compounds.

Cite this article

XU Ruirui , YANG Fengling , SUN Xiaoyuan , LU Jie , WANG Yang , KANG Zhen , LI Jianghua . Self-assembled immobilized polyphosphate kinase for ATP and GTP synthesis[J]. Food and Fermentation Industries, 2025 , 51(2) : 77 -82 . DOI: 10.13995/j.cnki.11-1802/ts.038602

References

[1] REN Y N, LIU Q, LIU H F, et al.Engineering substrate and energy metabolism for living cell production of cytidine-5′-diphosphocholine[J].Biotechnology and Bioengineering, 2020, 117(5):1426-1435.
[2] 胥睿睿. 体外酶法合成3′-磷酸腺苷-5′-磷酰硫酸[D].无锡:江南大学, 2020.
XU R R.Enzymatic synthesis of 3′-phosphoadenosine-5′-phosphosulfate in vitro[D].Wuxi:Jiangnan university, 2020.
[3] 高妮妮, 王芳, 廉哲勋.PI3K-Akt-eNOS信号通路在三磷酸腺苷后处理减轻兔心肌缺血再灌注损伤中的作用[J].中国循环杂志, 2014, 29(1):59-63.
GAO N N, WANG F, LIAN Z X.ATP post conditioning of PI3K-Akt-eNOS signaling pathway reducing the myocardial ischemia reperfusion injury in experimental rabbits[J].Chinese Circulation Journal, 2014, 29(1):59-63.
[4] 张杨. 微胶囊固定化细胞生物合成胞苷三磷酸[D].杭州:浙江工业大学, 2011.
ZHANG Y.Biosynthesis of cytidine triphosphate by microcapsules immobilized yeast cells[D].Hangzhou:Zhejiang University of Technology, 2011.
[5] 陈德康, 吕浩, 何明芳, 等.酵母酶系合成三磷酸鸟苷的研究[J].生物加工过程, 2004,2(3):51-55.
CHEN D K, LYU H, HE M F, et al.Optimizing the phosphorylation of GMP to GTP in the presence of beer yeasts[J].Chinese Journal of Bioprocess Engineering, 2004,2(3):51-55.
[6] MEANWELL M, SILVERMAN S M, LEHMANN J, et al.A short de novo synthesis of nucleoside analogs[J].Science, 2020, 369(6504):725-730.
[7] ELFIKY A A.Anti-HCV, nucleotide inhibitors, repurposing against COVID-19[J].Life Sciences, 2020, 248:117477.
[8] NOCEK B, KOCHINYAN S, PROUDFOOT M, et al.Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria[J].Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(46):17730-17735.
[9] ANDEXER J N, RICHTER M.Emerging enzymes for ATP regeneration in biocatalytic processes[J].Chembiochem, 2015, 16(3):380-386.
[10] XU R R, ZHANG W, XI X T, et al.Engineering sulfonate group donor regeneration systems to boost biosynthesis of sulfated compounds[J].Nature Communications, 2023, 14(1):7297.
[11] XU R R, WANG Y, HUANG H, et al.Closed-loop system driven by ADP phosphorylation from pyrophosphate affords equimolar transformation of ATP to 3′-phosphoadenosine-5′-phosphosulfate[J].ACS Catalysis, 2021, 11(16):10 405-10 415.
[12] 汪培林. 3′-磷酸腺苷-5′-磷酰硫酸固定化催化体系的构建与优化[D].无锡:江南大学, 2023.
WANG P L.Construction and optimization of an immobilized catalytic system for the biosynthesis of 3′-phosphoadenosine-5′-phosphosulfate[D].Wuxi:Jiangnan University, 2023.
[13] 刘亚, 章超桦, 陆子锋.高效液相色谱法检测水产品中的ATP关联化合物[J].食品与发酵工业, 2010, 36(6):137-141.
LIU Y, ZHANG C H, LU Z F.Detection of ATP related compounds of sea food by HPLC[J].Food and Fermentation Industries, 2010, 36(6):137-141.
[14] PARNELL A E, MORDHORST S, KEMPER F, et al.Substrate recognition and mechanism revealed by ligand-bound polyphosphate kinase 2 structures[J].Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(13):3350-3355.
[15] NOCEK B P, KHUSNUTDINOVA A N, RUSZKOWSKI M, et al.Structural insights into substrate selectivity and activity of bacterial polyphosphate kinases[J].ACS Catalysis, 2018, 8(11):10746-10760.
[16] WANG Y, HEERMANN R, JUNG K.CipA and CipB as scaffolds to organize proteins into crystalline inclusions[J].ACS Synthetic Biology, 2017, 6(5):826-836.
[17] WANG P L, XU R R, ZHAO L L, et al.Construction of a protein crystalline inclusion-based enzyme immobilization system for biosynthesis of PAPS from ATP and sulfate[J].ACS Synthetic Biology, 2023, 12(5):1487-1496.
[18] 吴思佳, 李杰, 胡晨龙, 等.固定化尿苷-胞苷激酶和聚磷酸激酶偶联催化制备5′-胞苷酸[J].生物工程学报, 2020, 36(5):1002-1011.
WU S J, LI J, HU C L, et al.Concomitant use of immobilized uridine-cytidine kinase and polyphosphate kinase for 5′-cytidine monophosphate production[J].Chinese Journal of Biotechnology.2020, 36(5):1002-1011.
[19] WANG P H, FUJISHIMA K, BERHANU S, et al.A bifunctional polyphosphate kinase driving the regeneration of nucleoside triphosphate and reconstituted cell-free protein synthesis[J].ACS Synthetic Biology, 2020, 9(1):36-42.
[20] 应国清, 石陆娥, 唐振兴.核苷酸类物质的应用研究进展[J].广州食品工业科技, 2004,20(2):126-128;125.
YING G Q, SHI L E, TANG Z X.The application of mononucleotides[J].Modern Food Science and Technology, 2004,20(2):126-128;125.
[21] 张国睿, 雷爱祖, 童张法.海藻酸钠明胶协同固定化酵母生产ATP[J].食品与发酵工业, 2008,34(4):16-20;34.
ZHANG G R, LEI A Z, TONG Z F.Biosynthesis of adenosine 5′-triphosphate by using sodium alginate-gelatin immobilized yeast cells[J].Food and Fermentation Industries, 2008,34(4):16-20;34.
Outlines

/