Mutagenesis selection and cross-breeding of high-yielding ethanol-yielding Saccharomyces cerevisiae haploids

  • HU Ronggen ,
  • LIAO Bei ,
  • CHEN Hui ,
  • LIU Xiuji ,
  • ZHANG Yan ,
  • DENG Zhangshuang
Expand
  • 1(Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical, China Three Gorges University, Yichang 443002, China)
    2(The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co. Ltd., Yichang 443003, China)
    3(National Key Laboratory of Agricultural Microbiology, Angel Yeast Co. Ltd., Yichang 443003, China)

Received date: 2023-10-13

  Revised date: 2024-04-03

  Online published: 2025-02-21

Abstract

Ethanol, a renewable energy, relies predominantly on yeast metabolism for its production.Selecting strains exhibiting high tolerance and productivity in ethanol fermentation is the key to achieve enhanced ethanol yields.In order to select and breed high-tolerant and high-yielding ethanol yeast strains, with six existing haploid brewing yeast strains, a mutant library was constructed through atmospheric and room temperature plasma mutagenesis, which were colorimetrically screened by triphenyl tetrazolium chloride, re-screened by pressure growth at 40, 41 ℃, and quantitatively analyzed by fermentation screening medium.Subsequently, nine dominant mutant haploid strains were obtained and hybridized through different mating types, resulting in a diploid brewing yeast strain, C6.with superior fermentation efficiency, better temperature resilience, acidity tolerance, and ethanol resistance than parental strains.The results exhibited that in a 35 ℃ composite sugar water fermentation medium, the C6 strain achieved an ethanol content of 14.6%, whereas parental strains AE2 and M reached 12.82% and 13.72%, respectively.Notably, the ethanol content increased by 13.8% and 6.4%, while at 30 ℃, the ethanol content for C6 came to 17.9%.It was evident that the stable OD680 values period of the improved temperature tolerance of C6, AE2, and M strains were 4.12, 0.35, 1.15, respectively, under 40 ℃ conditions, showing a biomass increase ranging from 1.2 to 12 times.Thus, the C6 strain exhibits promising industrial applications in the field of ethanol production

Cite this article

HU Ronggen , LIAO Bei , CHEN Hui , LIU Xiuji , ZHANG Yan , DENG Zhangshuang . Mutagenesis selection and cross-breeding of high-yielding ethanol-yielding Saccharomyces cerevisiae haploids[J]. Food and Fermentation Industries, 2025 , 51(3) : 129 -136 . DOI: 10.13995/j.cnki.11-1802/ts.037647

References

[1] 夏苗, 胡猛, 黄益平, 等.生物燃料乙醇脱水渗透汽化膜改性方法研究进展[J].当代化工研究, 2022(13):43-45.
XIA M, HU M, HUANG Y P, et al.Research progress on modification methods of bio-ethanol dehydration pervaporation membrane materials[J].Modern Chemical Research, 2022(13):43-45.
[2] MALAIRUANG K, KRAJANG M, SUKNA J, et al.High cell density cultivation of Saccharomyces cerevisiae with intensive multiple sequential batches together with a novel technique of fed-batch at cell level (FBC)[J].Processes, 2020, 8(10):1321.
[3] WU B, WANG Y W, DAI Y H, et al.Current status and future prospective of bio-ethanol industry in China[J].Renewable and Sustainable Energy Reviews, 2021, 145:111079.
[4] JACOBUS A P, GROSS J, EVANS J H, et al.Saccharomyces cerevisiae strains used industrially for bioethanol production[J].Essays in Biochemistry, 2021, 65(2):147-161.
[5] CHU-KY S, PHAM T H, BUI K L T, et al.Simultaneous liquefaction, saccharification and fermentation at very high gravity of rice at pilot scale for potable ethanol production and distillers dried grains composition[J].Food and Bioproducts Processing, 2016, 98:79-85.
[6] 张强. 高浓度酒精发酵技术研究进展[J].酿酒科技, 2019(3):102-106.
ZHANG Q.Research progress in high-gravity ethanol fermentation technology[J].Liquor-Making Science & Technology, 2019(3):102-106.
[7] 王卫国, 张仟伟, 赵永亮, 等.酿酒酵母的选育及其应用研究进展[J].河南工业大学学报(自然科学版), 2015, 36(6):104-112.
WANG W G, ZHANG Q W, ZHAO Y L, et al.Progress on the research of Saccharomyces cerevisiae's breeding and its applications[J].Journal of Henan University of Technology (Natural Science Edition), 2015, 36(6):104-112.
[8] ADEBAMI G E, KUILA A, AJUNWA O M, et al.Genetics and metabolic engineering of yeast strains for efficient ethanol production[J].Journal of Food Process Engineering, 2022, 45(7):e13798.
[9] 陆欢, 沈玲, 尚晓冬, 等.常压室温等离子体技术在微生物诱变育种中的研究进展[J].生物学杂志, 2023, 40(4):92-97.
LU H, SHEN L, SHANG X D, et al.Application of atmospheric and room temperature plasma mutagenesis in microbial and edible fungi mutation breeding[J].Journal of Biology, 2023, 40(4):92-97.
[10] 王犁烨, 王浩臣, 马珊, 等.常压室温等离子体选育高产酒精及酸的酿酒酵母[J].食品与机械, 2019, 35(5):26-31.
WANG L Y, WANG H C, MA S, et al.Breeding of Saccharomyces cerevisiae high-yield of alcohol and acid by atmospheric room temperature plasma[J].Food & Machinery, 2019, 35(5):26-31.
[11] 孙可澄, 尹花, 赵鑫锐, 等.多轮ARTP诱变快速筛选低产乙醛工业啤酒酵母[J].食品与发酵工业, 2021, 47(15):56-62.
SUN K C, YIN H, ZHAO X R, et al.Rapid screening of industrial brewer's yeast with low acetaldehyde yield by multi-round ARTP mutagenesis[J].Food and Fermentation Industries, 2021, 47(15):56-62.
[12] 洪霞, 苟敏, 汤岳琴.基于常压室温等离子体诱变提高马克斯克鲁维酵母的乙醇耐受性[J].当代化工研究, 2022(24):60-63.
HONG X, GOU M, TANG Y Q.ARTP mutagenesis to improve ethanol tolerance of Kluyveromyces marxianus[J].Modern Chemical Research, 2022(24):60-63.
[13] 黄庆, 苏圆媛, 左勇, 等.耐受高浓度乙醇酿酒酵母的定向驯化及其在桑葚果酒中的应用初探[J].食品与发酵工业, 2023, 49(12):166-178.
HUANG Q, SU Y Y, ZUO Y, et al.Directional domestication of Saccharomyces cerevisiae tolerant to high concentration ethanol and its application in mulberry wine brewing[J].Food and Fermentation Industries, 2023, 49(12):166-178.
[14] 徐俊, 雍晓雨, 费文斌, 等.基于TTC染色法的高活力酵母细胞定量筛选[J].食品与发酵工业, 2014, 40(7):1-5.
XU J, YONG X Y, FEI W B, et al.A rapid and dynamic quantitative screening method based on TTC staining of high activity yeast cells[J].Food and Fermentation Industries, 2014, 40(7):1-5.
[15] 冯俏. 耐高温酵母菌株的构建及其应用的研究[D].天津:天津科技大学, 2022.
FENG Q.Research on the construction and application of high temperature resistant yeast strain[D].Tianjin:Tianjin University of Science and Technology, 2022.
[16] 刘微, 戴凌燕, 苗青, 等.一种经济高效的酵母菌落PCR模板DNA制备方法的建立[J].中国生物制品学杂志, 2022, 35(7):848-852.
LIU W, DAI L Y, MIAO Q, et al.Development of a cost-effective method for preparation of template DNA for yeast colony PCR[J].Chinese Journal of Biologicals, 2022, 35(7):848-852.
[17] 封冰, 张翠英, 肖冬光.耐高糖面包酵母单倍体的分离筛选[J].酿酒科技, 2014(11):10-13.
FENG B, ZHANG C Y, XIAO D G.Isolation and screening of haploid of baker's yeast with high sugar tolerance[J].Liquor-Making Science & Technology, 2014(11):10-13.
[18] 曹喜涛, 陈凯, 李扬, 等.酿酒酵母单倍体菌株分离筛选及其产腺苷甲硫氨酸的初步研究[J].工业微生物, 2015, 45(3):36-40.
CAO X T, CHEN K, LI Y, et al.Isolation and screening of S-adenosyl-L-methionine yielding haploid strain from Saccharomyces cerevisiae[J].Industrial Microbiology, 2015, 45(3):36-40.
[19] 卜文静, 段秋虹, 杜金宇, 等.耐高温酿酒酵母菌株的选育[J].河南农业大学学报, 2016, 50(2):235-240.
BU W J, DUAN Q H, DU J Y, et al.Breeding of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production[J].Journal of Henan Agricultural University, 2016, 50(2):235-240.
[20] WANG L, LI B, WANG S P, et al.Improving multiple stress-tolerance of a flocculating industrial Saccharomyces cerevisiae strain by random mutagenesis and hybridization[J].Process Biochemistry, 2021, 102:275-285.
Outlines

/