Construction of 1,6-hexanediamine-producing Escherichia coli and its fermentation enhancement

  • LI Wenfei ,
  • LIU Wei ,
  • MAO Yin ,
  • LI Guohui ,
  • ZHAO Yunying ,
  • DENG Yu
Expand
  • 1(National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China)
    2(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
    3(Huaibei Mining Green Chemical New Materials Research Institute Co.Ltd., Huaibei 235000, China)

Received date: 2023-12-29

  Revised date: 2024-04-23

  Online published: 2025-03-28

Abstract

The production of 1,6-hexanediamine as the synthetic monomer of nylon 66 is mainly monopolized by foreign countries, and the traditional chemical synthesis of hexanediamine contains highly toxic cyanide, high technical barriers, long production process, how to use the biological method to make innovative breakthroughs in the context of carbon neutrality has become a challenge.However, up to now, no natural hexanediamine synthesis pathway has been reported.In this study, 6-aminohexanoic acid, a widely available substrate, was used to construct a synthetic pathway for hexanediamine through component-adapted assembly, and fermentation enhancement was combined to increase the yield of hexanediamine in engineered strains.Finally, excellent carboxylic acid reductase MAB CAR L342E, single transaminase HATA, and double transaminase combination PatA/VFTA were obtained through screening, and the initial hexanediamine yields of the engineered strains after combination could reach 3.01 mg/L (DAH4) and 8.50 mg/L (DAH37), respectively.On this basis, the fermentation conditions were optimized, and the yields of 1,6-hexanediamine reached 64.33 mg/L and 153.93 mg/L, which were 20.37 times and 17.11 times higher than those before optimization, respectively.This study has successfully constructed a pathway for the synthesis of hexanediamine by biological method, which provides technical support for the breakthrough of domestic chemical products.

Cite this article

LI Wenfei , LIU Wei , MAO Yin , LI Guohui , ZHAO Yunying , DENG Yu . Construction of 1,6-hexanediamine-producing Escherichia coli and its fermentation enhancement[J]. Food and Fermentation Industries, 2025 , 51(5) : 1 -7 . DOI: 10.13995/j.cnki.11-1802/ts.038413

References

[1] 谢锐, 徐保明, 陈坤.己二胺合成工艺的研究进展[J].应用化工, 2022, 51(3):873-877;883.
XIE R, XU B M, CHEN K.Research progress on the synthesis of hexamethylenediamine[J].Applied Chemical Industry, 2022, 51(3):873-877;883.
[2] 琚裕波, 童明全, 潘蓉, 等.己二腈合成工艺路线研究进展[J].河南化工, 2017, 34(1):12-15.
JU Y B, TONG M Q, PAN R, et al.Research progress on synthesis of adiponitrile synthesis process[J].Henan Chemical Industry, 2017, 34(1):12-15.
[3] PARVATE S, MAHANWAR P.Insights into the preparation of water-based acrylic interior decorative paint:Tuning binder’s properties by self-crosslinking of allyl acetoacetate-hexamethylenediamine[J].Progress in Organic Coatings, 2019, 126:142-149.
[4] 王明胜, 梅华.己二腈加氢制备己二胺催化剂的研究进展[J].合成纤维工业, 2012, 35(1):54-58.
WANG M S, MEI H.Research progress in catalysts for adiponitrile hydrogenation to hexanediamine[J].China Synthetic Fiber Industry, 2012, 35(1):54-58.
[5] 陈聚良, 张华森, 刘国际.己二腈催化加氢的动力学研究[J].郑州大学学报(工学版), 2012, 33(4):103-107.
CHEN J L, ZHANG H S, LIU G J.Study on the dynamics of catalytic hydrogenation of adiponitrile[J].Journal of Zhengzhou University (Engineering Science), 2012, 33(4):103-107.
[6] 俞磊, 王俊, 曹洪恩, 等.丙烯腈催化二聚反应的研究进展[J].有机化学, 2014, 34(10):1986-1991.
YU L, WANG J, CAO H E, et al.A review on catalyzed dimerization of acrylonitrile[J].Chinese Journal of Organic Chemistry, 2014, 34(10):1986-1991.
[7] TOLMAN C A, MCKINNEY R J, SEIDEL W C, et al.Homogeneous nickel-catalyzed olefin hydrocyanation[J].Advances in Catalysis, 1985, 33:1-46.
[8] 冯赛平, 程党国, 陈丰秋, 等.己二酸氨化制己二腈的宏观动力学[J].化工学报, 2015, 66(8):3057-3063.
FENG S P, CHENG D G, CHEN F Q, et al.Apparent kinetics of adipic acid ammoniation to adiponitrile[J].CIESC Journal, 2015, 66(8):3057-3063.
[9] 赵国忠. 己二腈生产技术进展及展望[J].化工设计, 2022, 32(4):10-13;50;1.
ZHAO G Z.Progressand prospect of adiponitrile production technology[J].Chemical Engineering Design, 2022, 32(4):10-13;50;1.
[10] 王超. 己二腈生产工艺及现状[J].化工管理, 2020(4):178-179.
WANG C.Production technology and present situation of adiponitrile[J].Chemical Enterprise Management, 2020(4):178-179.
[11] 屠庆华. 己二腈行业现状及发展趋势分析[J].化学工业, 2020, 38(1):44-51.
TU Q H.Current situation and development trend of adiponitrile industry[J].Chemical Industry, 2020, 38(1):44-51.
[12] FEDORCHUK T P, KHUSNUTDINOVA A N, EVDOKIMOVA E, et al.One-pot biocatalytic transformation of adipic acid to 6-aminocaproic acid and 1, 6-hexamethylenediamine using carboxylic acid reductases and transaminases[J].Journal of the American Chemical Society, 2020, 142(2):1038-1048.
[13] DROS A B, LARUE O, REIMOND A, et al.Hexamethylenediamine (HMDA) from fossil- vs.bio-based routes:An economic and life cycle assessment comparative study[J].Green Chemistry, 2015, 17(10):4760-4772.
[14] ZHANG Z W, FANG L, WANG F, et al.Transforming inert cycloalkanes into α, ω-diamines by designed enzymatic cascade catalysis[J].Angewandte Chemie (International Ed), 2023, 62(16):e202215935.
[15] 石焜, 郁惠蕾, 许建和.羧酸还原酶的研究进展[J].微生物学通报, 2020, 47(7):2255-2265.
SHI K, YU H L, XU J H.Recent advances in carboxylic acid reductases[J].Microbiology China, 2020, 47(7):2255-2265.
[16] TURK S C H J, KLOOSTERMAN W P, NINABER D K, et al.Metabolic engineering toward sustainable production of nylon-6[J].ACS Synthetic Biology, 2016, 5(1):65-73.
[17] STOLTERFOHT H, SCHWENDENWEIN D, SENSEN C W, et al.Four distinct types of E.C.1.2.1.30 enzymes can catalyze the reduction of carboxylic acids to aldehydes[J].Journal of Biotechnology, 2017, 257:222-232.
[18] KRAMER L, LE X, RODRIGUEZ M, et al.Engineering carboxylic acid reductase (CAR) through a whole-cell growth-coupled NADPH recycling strategy[J].ACS Synthetic Biology, 2020, 9(7):1632-1637.
[19] KHUSNUTDINOVA A N, FLICK R, POPOVIC A, et al.Exploring bacterial carboxylate reductases for the reduction of bifunctional carboxylic acids[J].Biotechnology Journal, 2017, 12(11):1-12.
[20] 黄荻萱, 李国辉, 毛银, 等.生物发酵产丁二胺的定量测定[J].食品与发酵工业, 2020, 46(12):231-236.
HUANG D X, LI G H, MAO Y, et al.A quantitative method for microbial-based putrescine determination[J].Food and Fermentation Industries, 2020, 46(12):231-236.
[21] WANG L, LI G H, LI A T, et al.Directed synthesis of biobased 1, 6-diaminohexane from adipic acid by rational regulation of a functional enzyme cascade in Escherichia coli[J].ACS Sustainable Chemistry & Engineering, 2023, 11(15):6011-6020.
[22] ZHANG Y, DAI X F, JIN H N, et al.The effect of optimized carbon source on the synthesis and composition of exopolysaccharides produced by Lactobacillus paracasei[J].Journal of Dairy Science, 2021, 104(4):4023-4032.
[23] 胡耀辉, 王丹, 朴春红, 等.重组麦芽糖转葡萄糖基酶工程菌发酵条件的优化[J].食品科学, 2011, 32(19):141-146.
HU Y H, WANG D, PIAO C H, et al.Optimization of fermentation conditions for genetically engineered recombinant bacterium with amylomaltase gene[J].Food Science, 2011, 32(19):141-146.
Outlines

/