Efficient synthesis of putrescine by permeabilization treatment of recombinant Escherichia coli

  • DING Bo ,
  • LIU Wei ,
  • MAO Yin ,
  • LI Guohui ,
  • DENG Yu
Expand
  • 1(National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China)
    2(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
    3(Huaibei Mining Green Chemical New Materials Research Institute Co. Ltd., Huaibei 235000, China)

Received date: 2024-02-01

  Revised date: 2024-04-23

  Online published: 2025-03-28

Abstract

Putrescine is mainly used in the preparation of high-temperature-resistant nylon PA46.Currently, it is mainly monopolized due to the high technical barriers derived from using highly toxic hydrocyanic acid and acrylonitrile as raw materials.To address the low yield and productivity in the biological synthesis of putrescine, this research improved the substance transfer efficiency via permeabilization of cells based on a biocatalytic route from arginine to putrescine, and the synthesis ability was enhanced through engineering strain cultivation and catalytic process enhancement.The results showed that the ethanol permeabilization treatment could significantly enhance the mass transfer limitation, and the putrescine yield was enhanced by more than 50% compared with the control, reaching 14.92 g/L.Meanwhile, the optimal cultivation conditions and the catalytic process were determined, and the putrescine yield reached the highest reported level of 88.67 g/L,with a molar conversion rate 0.81 mol/mol and a production efficiency of 2.46 g/(L·h), laying the foundation for the subsequent development of biobased putrescine.

Cite this article

DING Bo , LIU Wei , MAO Yin , LI Guohui , DENG Yu . Efficient synthesis of putrescine by permeabilization treatment of recombinant Escherichia coli[J]. Food and Fermentation Industries, 2025 , 51(5) : 15 -21 . DOI: 10.13995/j.cnki.11-1802/ts.038803

References

[1] YAMANOBE T, KURIHARA Y, UEHARA H, et al.Structure and characterization of nylon 46[J].Journal of Molecular Structure, 2007, 829(1-3):80-87.
[2] 吴全德, 郝源增.新型尼龙46工程塑料的性能及应用[J].工程塑料应用, 2000, 28(11):31-33.
WU Q D, HAO Y Z.Property and application of new engineering plastics nylon 46[J].Engineering Plastics Application, 2000, 28(11):31-33.
[3] 赵晓. 高分子量聚己二酰丁二胺的合成工艺及性能研究[D].郑州:郑州大学, 2014.
ZHAO X.Study on synthesis technology and properties of high molecular weight poly(tetramethylene adipamide)[D].Zhengzhou:Zhengzhou University, 2014.
[4] CHAE T U, AHN J H, KO Y S, et al.Metabolic engineering for the production of dicarboxylic acids and diamines[J].Metabolic Engineering, 2020, 58:2-16.
[5] QIAN Z G, XIA X X, LEE S Y.Metabolic engineering of Escherichia coli for the production of putrescine:A four carbon diamine[J].Biotechnology and Bioengineering, 2009, 104(4):651-662.
[6] NGUYEN A Q D, SCHNEIDER J, REDDY G K, et al.Fermentative production of the diamine putrescine:System metabolic engineering of Corynebacterium glutamicum[J].Metabolites, 2015, 5(2):211-231.
[7] LI Z, SHEN Y P, JIANG X L, et al.Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production[J].Journal of Industrial Microbiology & Biotechnology, 2018, 45(2):123-139.
[8] THONGBHUBATE K, IRIE K, SAKAI Y M, et al.Improvement of putrescine production through the arginine decarboxylase pathway in Escherichia coli K-12[J].AMB Express, 2021, 11(1):168.
[9] LI G H, HUANG D X, WANG L, et al.Highly efficient whole-cell biosynthesis of putrescine by recombinant Escherichia coli[J].Biochemical Engineering Journal, 2021, 166:107859.
[10] HUI H J, BAI Y J, FAN T P, et al.Biosynthesis of putrescine from L-arginine using engineered Escherichia coli whole cells[J].Catalysts, 2020, 10(9):947.
[11] 随树珍. 生物转化法合成1,4-丁二胺大肠杆菌工程菌的构建[D].天津:天津科技大学, 2016.
SUI S Z.Construction of recombinant Escherichia coli for production of 1,4-blutyldiamine via biotransformation[D].Tianjin:Tianjin University of Science & Technology, 2016.
[12] YANG S C, TING W W, NG I S.Effective whole cell biotransformation of arginine to a four-carbon diamine putrescine using engineered Escherichia coli[J].Biochemical Engineering Journal, 2022, 185:108502.
[13] 王莉. 大肠杆菌生物法合成二元胺的机理研究[D].无锡:江南大学, 2023.
WANG L.Biosynthesis of diamines in Escherichia coli[D].Wuxi:Jiangnan University, 2023.
[14] DE CARVALHO C C C R.Enzymatic and whole cell catalysis:Finding new strategies for old processes[J].Biotechnology Advances, 2011, 29(1):75-83.
[15] CHEN R R.Permeability issues in whole-cell bioprocesses and cellular membrane engineering[J].Applied Microbiology and Biotechnology, 2007, 74(4):730-738.
[16] 王艺颖, 董钰漫, 尹伟, 等.全细胞生物催化过程强化的研究进展[J].化学通报, 2020, 83(10):875-882.
WANG Y Y, DONG Y M, YIN W, et al.Progress in the process intensification of whole-cell biocatalysis[J].Chemistry, 2020, 83(10):875-882.
[17] 刘宇轩. 基于赖氨酸脱羧酶的高纯度戊二胺的合成工艺开发[D].天津:天津大学, 2020.
LIU Y X.Development of a process for the production of high-purified cadaverine based on lysine decarboxylase[D].Tianjin:Tianjin University, 2020.
[18] 王越, 李江华, 堵国成, 等.L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化[J].中国生物工程杂志, 2019, 39(3):56-64.
WANG Y, LI J H, DU G C, et al.Molecular modification of L-amino acid deaminase and optimization of α-ketoglutaric acid production by whole-cell biocatalysis[J].China Biotechnology, 2019, 39(3):56-64.
[19] SUZUKI H, THONGBHUBATE K, MURAOKA M, et al.Agmatine production by Escherichia coli cells expressing SpeA on the extracellular surface[J].Enzyme and Microbial Technology, 2023, 162:110139.
[20] MATURANA P, ORELLANA M S, HERRERA S M, et al.Crystal structure of Escherichia coli agmatinase:Catalytic mechanism and residues relevant for substrate specificity[J].International Journal of Molecular Sciences, 2021, 22(9):4769.
Outlines

/