This study investigated six human-derived Bifidobacterium species using a synthetic medium with intestinal mucin as the sole carbon source, to analyze their mucin utilization characteristics and interspecies cross-feeding relationships.Results indicated that only Bifidobacterium bifidum could utilize mucin in vitro and foster the growth of other bifidobacteria.Building on this, non-targeted metabolomics was employed to examine the mucin utilization byproducts of B. bifidum, with subsequent KEGG pathway enrichment of the identified differential metabolites.The findings revealed strain-specific differential metabolites (Variable importance in the projection>1, P<0.05, Fold change>1.5) post mucin utilization by B. bifidum, with strain FFJND15M5 exhibiting the most significant concentration increase in 22 metabolites.B. bifidum was capable of producing derivative sugars like N-acetylneuraminic acid, L-fucose, and N-acetyl-D-galactosamine 4-sulfate, as well as metabolites such as succinic acid, 3-phenyllactic acid, DL-4-hydroxyphenyllactic acid, and indole-3-lactic through various metabolic pathways including pyrimidine metabolism, amino sugar and nucleotide sugar metabolism, and butanoate metabolism.These results provide a scientific theoretical foundation for understanding the mucin utilization behavior of B. bifidum.
XIN Zongyuan
,
LI Wentian
,
LIN Guopeng
,
GUO Min
,
TIAN Peijun
,
WANG Linlin
,
JIN Xing
,
WANG Gang
,
ZHANG Hao
. Detection of Bifidobacterium’s ability to utilize intestinal mucin and metabolomic analysis of its metabolites[J]. Food and Fermentation Industries, 2025
, 51(7)
: 16
-24
.
DOI: 10.13995/j.cnki.11-1802/ts.039090
[1] KOH A, BÄCKHED F.From association to causality:The role of the gut microbiota and its functional products on host metabolism[J].Molecular Cell, 2020, 78(4):584-596.
[2] MARTENS E C, NEUMANN M, DESAI M S.Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier[J].Nature Reviews.Microbiology, 2018, 16(8):457-470.
[3] PAONE P, CANI P D.Mucus barrier, mucins and gut microbiota:The expected slimy partners?[J].Gut, 2020, 69(12):2232-2243.
[4] PAN L, FU T Y, CHENG H, et al.Polysaccharide from edible Alga Gloiopeltis furcata attenuates intestinal mucosal damage by therapeutically remodeling the interactions between gut microbiota and mucin O-glycans[J].Carbohydrate Polymers, 2022, 278:118921.
[5] ZHENG M Y, HAN R, YUAN Y L, et al.The role of Akkermansia muciniphila in inflammatory bowel disease:Current knowledge and perspectives[J].Frontiers in Immunology, 2023, 13:1089600.
[6] FUKATA M, ARDITI M.The role of pattern recognition receptors in intestinal inflammation[J].Mucosal Immunology, 2013, 6(3):451-463.
[7] KIM Y S, HO S B.Intestinal goblet cells and mucins in health and disease:Recent insights and progress[J].Current Gastroenterology Reports, 2010, 12(5):319-330.
[8] DONALDSON G P, LEE S M, MAZMANIAN S K.Gut biogeography of the bacterial microbiota[J].Nature Reviews.Microbiology, 2016, 14(1):20-32.
[9] SHUOKER B, PICHLER M J, JIN C S, et al.Sialidases and fucosidases of Akkermansia muciniphila are crucial for growth on mucin and nutrient sharing with mucus-associated gut bacteria[J].Nature Communications, 2023, 14(1):1833.
[10] TAILFORD L E, CROST E H, KAVANAUGH D, et al.Mucin glycan foraging in the human gut microbiome[J].Frontiers in Genetics, 2015, 6:81.
[11] 刘时捷. 双歧杆菌碳源利用特性及种间互养机制研究[D].无锡:江南大学, 2021.
LIU S J.Study on utilization characteristics of carbon source and interspecific mutualism mechanism of Bifidobacterium[D].Wuxi:Jiangnan University, 2021.
[12] RUIZ L, GUEIMONDE M, COUTÉ Y, et al.Evaluation of the ability of Bifidobacterium longum to metabolize human intestinal mucus[J].FEMS Microbiology Letters, 2011, 314(2):125-130.
[13] ENGEVIK M A, LUK B, CHANG-GRAHAM A L, et al.Bifidobacterium dentium fortifies the intestinal mucus layer via autophagy and calcium signaling pathways[J].mBio, 2019, 10(3):e01087-19.
[14] MARTENS E C, CHIANG H C, GORDON J I.Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont[J].Cell Host & Microbe, 2008, 4(5):447-457.
[15] WARD R E, NIÑONUEVO M, MILLS D A, et al.In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria[J].Molecular Nutrition & Food Research, 2007, 51(11):1398-1405.
[16] EGAN M, O’CONNELL MOTHERWAY M, VENTURA M, et al.Metabolism of sialic acid by Bifidobacterium breve UCC2003[J].Applied and Environmental Microbiology, 2014, 80(14):4414-4426.
[17] BUNESOVA V, LACROIX C, SCHWAB C.Mucin cross-feeding of infant bifidobacteria and Eubacterium hallii[J].Microbial Ecology, 2018, 75(1):228-238.
[18] STAHL M, FRIIS L M, NOTHAFT H, et al.L-fucose utilization provides Campylobacter jejuni with a competitive advantage[J].Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(17):7194-7199.
[19] PACHECO A R, CURTIS M M, RITCHIE J M, et al.Fucose sensing regulates bacterial intestinal colonization[J].Nature, 2012, 492(7427):113-117.
[20] ROAGER H M, LICHT T R.Microbial tryptophan catabolites in health and disease[J].Nature Communications, 2018, 9(1):3294.
[21] NATIVIDAD J M, AGUS A, PLANCHAIS J, et al.Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome[J].Cell Metabolism, 2018, 28(5):737-749.
[22] KOVATCHEVA-DATCHARY P, NILSSON A, AKRAMI R, et al.Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella[J].Cell Metabolism, 2015, 22(6):971-982.
[23] CHIA L W, HORNUNG B V H, AALVINK S, et al.Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach[J].Antonie Van Leeuwenhoek, 2018, 111(6):859-873.
[24] XU J, YANG Y C, LI X, et al.Pleiotropic activities of succinate:The interplay between gut microbiota and cardiovascular diseases[J].iMeta, 2023, 2(3):e124.
[25] PRIZONT R.Degradation of intestinal glycoproteins by pathogenic Shigella flexneri[J].Infection and Immunity, 1982, 36(2):615-620.
[26] SLOMIANY B L, MURTY V L N, PIOTROWSKI J, et al.Glycosulfatase activity of Helicobacter pylori toward gastric mucin[J].Biochemical and Biophysical Research Communications, 1992, 183(2):506-513.
[27] BÄCKHED F, ROSWALL J, PENG Y Q, et al.Dynamics and stabilization of the human gut microbiome during the first year of life[J].Cell Host & Microbe, 2015, 17(5):690-703.
[28] YAMAGUCHI M, YAMAMOTO K.Mucin glycans and their degradation by gut microbiota[J].Glycoconjugate Journal, 2023, 40(4):493-512.
[29] SICARD J F, LE BIHAN G, VOGELEER P, et al.Interactions of intestinal bacteria with components of the intestinal mucus[J].Frontiers in Cellular and Infection Microbiology, 2017, 7:387.