Research progress on detection of aflatoxin M1 by biosensors based on signal amplification strategy

  • YUN Huan ,
  • ZHANG Yuhao ,
  • MA Liang ,
  • GUO Ting
Expand
  • 1(College of Food Science,Southwest University, Chongqing 400715, China)
    2(Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China)
    3(Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, China)

Received date: 2024-06-25

  Revised date: 2024-07-22

  Online published: 2025-04-29

Abstract

Aflatoxin M1 is a hydroxylated metabolite derived from aflatoxin B1 in mammalian livers, exhibiting carcinogenic, immunotoxic, genotoxic, and mutagenic properties.It poses a significant threat to consumer safety as it is challenging to eliminate from milk and dairy products.Therefore, the development of rapid and sensitive on-site detection technologies is of paramount importance.Biosensors are widely used for the detection of mycotoxins, because of their advantages of portability, sensitivity, and intelligence.This article reviewed the research progress of aflatoxin M1 biosensor based on signal amplification strategy in recent years, discussing the advantages and limitations of signal amplification strategy in biosensor applications.This review also provided an outlook on the development trend of signal amplification strategy.

Cite this article

YUN Huan , ZHANG Yuhao , MA Liang , GUO Ting . Research progress on detection of aflatoxin M1 by biosensors based on signal amplification strategy[J]. Food and Fermentation Industries, 2025 , 51(7) : 387 -395 . DOI: 10.13995/j.cnki.11-1802/ts.040292

References

[1] OKECHUKWU V O, ADELUSI O A, KAPPO A P, et al.Aflatoxins:Occurrence, biosynthesis, mechanism of action and effects, conventional/emerging detection techniques[J].Food Chemistry, 2024, 436:137775.
[2] CAO H H, LIANG D, TANG K Z, et al.SERS and MRS signals engineered dual-mode aptasensor for simultaneous distinguishment of aflatoxin subtypes[J].Journal of Hazardous Materials, 2024, 462:132810.
[3] 李翀. 黄曲霉分生孢子萌发期代谢变化规律及其调控机制研究[D].武汉:华中农业大学, 2022.
LI C.The study on metabolic changes and regulation mechanism of Aspergillus flavus conidia during germination[D].Wuhan:Huazhong Agricultural University, 2022.
[4] 张焕, 高亚男, 郑楠, 等.黄曲霉毒素M1与赭曲霉毒素A联合作用诱导分化Caco-2细胞凋亡的机制[J].中国食品学报, 2019, 19(3):93-101.
ZHANG H, GAO Y N, ZHENG N, et al.Combined effects of aflatoxin M1and ochratoxin A on the apoptosis and mechanism in differentiated Caco-2 Cells[J].Journal of Chinese Institute of Food Science and Technology, 2019, 19(3):93-101.
[5] MIN L, FINK-GREMMELS J, LI D G, et al.An overview of aflatoxin B1 biotransformation and aflatoxin M1 secretion in lactating dairy cows[J].Animal Nutrition, 2021, 7(1):42-48.
[6] MIN L, LI D G, TONG X, et al.The challenges of global occurrence of aflatoxin M1 contamination and the reduction of aflatoxin M1 in milk over the past decade[J].Food Control, 2020, 117:107352.
[7] XIONG J L, WEN D F, ZHOU H L, et al.Occurrence of aflatoxin M1 in yogurt and milk in central-eastern China and the risk of exposure in milk consumers[J].Food Control, 2022, 137:108928.
[8] XU N N, XIAO Y P, XIE Q G, et al.Occurrence of aflatoxin B1 in total mixed rations and aflatoxin M1 in raw and commercial dairy milk in Northern China during winter season[J].Food Control, 2021, 124:107916.
[9] CORDEIRO F, BAER I, ROBOUCH P, et al.Setting maximum limits for trace elements in baby food in European legislation:The outcome of international measurement evaluation programme®-33[J].Food Additives & Contaminants.Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2013, 30(4):678-686.
[10] PECORELLI I, GUARDUCCI N, VON HOLST C, et al.Critical comparison of analytical performances of two immunoassay methods for rapid detection of aflatoxin M1 in milk[J].Toxins, 2020, 12(4):270.
[11] SHARMA P, PANDEY V, SHARMA M M M, et al.A review on biosensors and nanosensors application in agroecosystems[J].Nanoscale Research Letters, 2021, 16(1):136.
[12] LI R X, WEN Y, WANG F L, et al.Recent advances in immunoassays and biosensors for mycotoxins detection in feedstuffs and foods[J].Journal of Animal Science and Biotechnology, 2021, 12(1):108.
[13] SUN X Y, SUN J D, YE Y L, et al.Metabolic pathway-based self-assembled Au@MXene liver microsome electrochemical biosensor for rapid screening of aflatoxin B1[J].Bioelectrochemistry, 2023, 151:108378.
[14] CUI H N, AN K Q, WANG C Q, et al.A disposable ratiometric electrochemical aptasensor with exonuclease I-powered target recycling amplification for highly sensitive detection of aflatoxin B1[J].Sensors and Actuators B:Chemical, 2022, 355:131238.
[15] SUN C N, LIAO X F, HUANG P X, et al.A self-assembled electrochemical immunosensor for ultra-sensitive detection of ochratoxin A in medicinal and edible malt[J].Food Chemistry, 2020, 315:126289.
[16] RADI A E, EISSA A, WAHDAN T.Molecularly imprinted impedimetric sensor for determination of mycotoxin Zearalenone[J].Electroanalysis, 2020, 32(8):1788-1794.
[17] CINGOLANI M, MUMMOLO L, LUGLI F, et al.Protein aggregation detection with fluorescent macromolecular and nanostructured probes:Challenges and opportunities[J].New Journal of Chemistry, 2021, 45(32):14259-14268.
[18] HUANG F C, ZHANG Y C, LIN J H, et al.Biosensors coupled with signal amplification technology for the detection of pathogenic bacteria:A review[J].Biosensors, 2021, 11(6):190.
[19] WANG S C.Construction of DNA biosensors for mercury (Ⅱ) ion detection based on enzyme-driven signal amplification strategy[J].Biomolecules, 2021, 11(3):399.
[20] SINGH A, SHARMA A, AHMED A, et al.Recent advances in electrochemical biosensors:Applications, challenges, and future scope[J].Biosensors, 2021, 11(9):336.
[21] THURNER F, ALATRAKTCHI F A.Recent advances in electrochemical biosensing of aflatoxin M1 in milk-A mini review[J].Microchemical Journal, 2023, 190:108594.
[22] 惠媛媛, 王毕妮, 张富新, 等.基于还原氧化石墨烯的电化学适配体传感器对黄曲霉毒素M1的检测[J].食品工业科技, 2021, 42(14):249-256.
HUI Y Y, WANG B N, ZHANG F X, et al.An electrochemical aptasensor for detection of aflatoxin M1 based on reduced graphene oxide[J].Science and Technology of Food Industry, 2021, 42(14):249-256.
[23] PANDEY A K, RAJPUT Y S, SHARMA R, et al.Immobilized aptamer on gold electrode senses trace amount of aflatoxin M1[J].Applied Nanoscience, 2017, 7(8):893-903.
[24] ABERA B D, FALCO A, IBBA P, et al.Development of flexible dispense-printed electrochemical immunosensor for aflatoxin M1 detection in milk[J].Sensors, 2019, 19(18):3912.
[25] CHROUDA A, AYED D, ZINOUBI K, et al.Highly stable and ultra-sensitive amperometric aptasensor based on pectin stabilized gold nanoparticles on graphene oxide modified GCE for the detection of aflatoxin M1[J].Food Chemistry Advances, 2022, 1:100068.
[26] AHMADI S F, HOJJATOLESLAMY M, KIANI H, et al.Monitoring of Aflatoxin M1 in milk using a novel electrochemical aptasensor based on reduced graphene oxide and gold nanoparticles[J].Food Chemistry, 2022, 373:131321.
[27] KORDASHT H K, HASANZADEH M.Specific monitoring of aflatoxin M1 in real samples using aptamer binding to DNFS based on turn-on method:A novel biosensor[J].Journal of Molecular Recognition, 2020, 33(6):e2832.
[28] YANG D, HUI Y Y, LIU Y Y, et al.Novel dual-recognition electrochemical biosensor for the sensitive detection of AFM1 in milk[J].Food Chemistry, 2024, 433:137362.
[29] NGUYEN B H, TRAN L D, DO Q P, et al.Label-free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor[J].Materials Science and Engineering:C, 2013, 33(4):2229-2234.
[30] WANG B Z, AKIBA U, ANZAI J I.Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers:A review[J].Molecules, 2017, 22(7):1048.
[31] 靖乐. 基于梳型阳离子共聚物介导的DNA电化学生物传感器的构筑及其检测性能研究[D].武汉:中国地质大学, 2023.
JING L.Construction and detection performance of DNA electrochemical biosensor assisted by comb-type cationic copolymer[D].Wuhan:China University of Geosciences, 2023.
[32] GUO L L, WANG Y Y, PANG Y H, et al.In situ growth of covalent organic frameworks TpBD on electrode for electrochemical determination of aflatoxin M1[J].Journal of Electroanalytical Chemistry, 2021, 881:114931.
[33] HAMAMI M, MARS A, RAOUAFI N.Biosensor based on antifouling PEG/Gold nanoparticles composite for sensitive detection of aflatoxin M1 in milk[J].Microchemical Journal, 2021, 165:106102.
[34] KULIKOVA T N, PORFIREVA A V, EVTUGYN G A, et al.Electrochemical aptasensor with layer-by-layer deposited polyaniline for aflatoxin M1 voltammetric determination[J].Electroanalysis, 2019, 31(10):1913-1924.
[35] ZHANG M K, GUO X D.Emerging strategies in fluorescent aptasensor toward food hazard aflatoxins detection[J].Trends in Food Science & Technology, 2022, 129:621-633.
[36] 张小凡. 基于DNA链置换策略的荧光传感分析方法及性能研究[D].青岛:青岛科技大学, 2023.
ZHANG X F.Study on fluorescence sensing analysis method and performance based on DNA strand displacement strategy[D].Qingdao:Qingdao University of Science & Technology, 2023.
[37] 李新. 基于toehold链置换辅助目标循环放大的新型荧光生物传感器的研究[D].重庆:西南大学, 2017.
LI X.Study on a novel fluorescence biosensor based on toehold strand displacement reactions aided target recycling amplification[D].Chongqing:Southwest University, 2017.
[38] LI H, YANG D B, LI P W, et al.Palladium nanoparticles-based fluorescence resonance energy transfer aptasensor for highly sensitive detection of aflatoxin M1 in milk[J].Toxins, 2017, 9(10):318.
[39] 郭婷, 林淑凤, 马良, 等.基于磁性纳米材料和适配体的荧光传感器检测牛奶中黄曲霉毒素M1[J].食品与发酵工业, 2019, 45(5):218-223.
GUO T, LIN S F, MA L, et al.A fluorescent biosensor based on magnetic nanoparticles and aptamer for detecting AFM1 in milk[J].Food and Fermentation Industries, 2019, 45(5):218-223.
[40] SAMEIYAN E, KHOSHBIN Z, LAVAEE P, et al.A bivalent binding aptamer-cDNA on MoS2 nanosheets based fluorescent aptasensor for detection of aflatoxin M1[J].Talanta, 2021, 235:122779.
[41] 蒲源, 王丹, 钱骏, 等.荧光纳米材料及其生物成像应用[J].中国材料进展, 2017, 36(2):103-111.
PU Y, WANG D, QIAN J, et al.Fluorescent nanomaterials and their applications in bioimaging[J].Materials China, 2017, 36(2):103-111.
[42] SUN J D, LI M, XING F G, et al.Novel dual immunochromatographic test strip based on double antibodies and biotin-streptavidin system for simultaneous sensitive detection of aflatoxin M1 and ochratoxin A in milk[J].Food Chemistry, 2022, 375:131682.
[43] FORCADA S, SÁNCHEZ-VISEDO A, MELENDRERAS C, et al.Design and evaluation of a competitive phosphorescent immunosensor for aflatoxin M1 quantification in milk samples using Mn:ZnS quantum dots as antibody tags[J].Chemosensors, 2022, 10(2):41.
[44] SU Z X, ZHAO G Y, DOU W C.Determination of trace aflatoxin M1 (AFM1) residue in milk by an immunochromatographic assay based on (PEI/PSS)4 red silica nanoparticles[J].Mikrochimica Acta, 2020, 187(12):658.
[45] SINGH H, SINGH S, BHARDWAJ S K, et al.Development of carbon quantum dot-based lateral flow immunoassay for sensitive detection of aflatoxin M1 in milk[J].Food Chemistry, 2022, 393:133374.
[46] WANG J, JIANG C X, YUAN J R, et al.Hue recognition competitive fluorescent lateral flow immunoassay for aflatoxin M1 detection with improved visual and quantitative performance[J].Analytical Chemistry, 2022, 94(30):10865-10873.
[47] ZHOU J J, LIU Y T, DU X P, et al.Recent advances in design and application of nanomaterials-based colorimetric biosensors for agri-food safety analysis[J].ACS Omega, 2023, 8(49):46346-46361.
[48] SADIQ Z, SAFIABADI TALI S H, HAJIMIRI H, et al.Gold nanoparticles-based colorimetric assays for environmental monitoring and food safety evaluation[J].Critical Reviews in Analytical Chemistry, 2024, 54(7):2209-2244.
[49] 苏柳, 贺伟华, 张干, 等.两种常用适配体的纳米金比色法快速检测牛奶中黄曲霉毒素M1的评价研究[J].食品工业科技, 2024, 45(8):284-292.
SU L, HE W H, ZHANG G, et al.Evaluation of gold nanoparticles colorimetric sensing based on two commonly aptamer for rapid detecting aflatoxin M1 in milk[J].Science and Technology of Food Industry, 2024, 45(8):284-292.
[50] LERDSRI J, SOONGSONG J, LAOLUE P, et al.Reliable colorimetric aptasensor exploiting 72-Mers ssDNA and gold nanoprobes for highly sensitive detection of aflatoxin M1 in milk[J].Journal of Food Composition and Analysis, 2021, 102:103992.
[51] JALALIAN S H, LAVAEE P, RAMEZANI M, et al.An optical aptasensor for aflatoxin M1 detection based on target-induced protection of gold nanoparticles against salt-induced aggregation and silica nanoparticles[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2021, 246:119062.
[52] 刘玉婷, 陆清, 唐志永, 等.基于氧化还原型纳米酶的比色传感器在食品安全检测中的研究进展[J].食品科学, 2024,45(22):311-321.
LIU Y T, LU Q, TANG Z Y, et al.Research progress in colorimetric sensors based on redox-type nanozymes for food safety detection[J].Food Science, 2024,45(22):311-321.
[53] WEI Y, HUANG L H, SHI Z F, et al.Smartphone-integrated colorimetric sensor for rapid and highly selective detection of spermine in food based on the laccase-mimicking activity of flower-shaped Mn3O4 nanoparticles[J].Microchemical Journal, 2024, 198:110148.
[54] QIN S, LIU B, XUE Y T, et al.A three-dimensional network structure of metal-based nanozymes for the construction of colorimetric sensors for the detection of antioxidants[J].Analytical Methods, 2024, 16(15):2292-2300.
[55] WEI X J, MA P F, IMRAN MAHMOOD K, et al.Screening of a high-affinity aptamer for aflatoxin M1 and development of its colorimetric aptasensor[J].Journal of Agricultural and Food Chemistry, 2023, 71(19):7546-7556.
[56] ESMAELPOURFARKHANI M, RAMEZANI M, ALIBOLANDI M, et al.CRISPR-Cas12a-based colorimetric aptasensor for aflatoxin M1 detection based on oxidase-mimicking activity of flower-like MnO2 nanozymes[J].Talanta, 2024, 271:125729.
[57] 席强. 光学生物传感中信号放大策略与石墨烯类纳米材料的应用[D].长沙:湖南大学, 2015.
XI Q.Signal amplification strategies and graphene-type nanomaterials used in optical biosensing technology[D].Changsha:Hunan University, 2015.
[58] MA L, GUO T, PAN S L, et al.A fluorometric aptasensor for patulin based on the use of magnetized graphene oxide and DNase I-assisted target recycling amplification[J].Mikrochimica Acta, 2018, 185(10):487.
[59] 刘萌. 基于酶辅助信号放大的荧光生物传感器的构建及其应用研究[D].济南:山东师范大学, 2021.
LIU M.Construction of enzyme assisted signal a mplification-based fluorescence biosensors for biomedical applications[D].Jinan:Shandong Normal University, 2021.
[60] GUO X D, WEN F, QIAO Q Q, et al.A novel graphene oxide-based aptasensor for amplified fluorescent detection of aflatoxin M1 in milk powder[J].Sensors, 2019, 19(18):3840.
[61] ZHANG F Y, LIU L Y, NI S N, et al.Turn-on fluorescence aptasensor on magnetic nanobeads for aflatoxin M1 detection based on an exonuclease Ⅲ-assisted signal amplification strategy[J].Nanomaterials, 2019, 9(1):104.
[62] WANG S Y, ZONG Z W, XU J G, et al.Recognition-activated primer-mediated exponential rolling circle amplification for signal probe production and ultrasensitive visual detection of ochratoxin A with nucleic acid lateral flow strips[J].Analytical Chemistry, 2023, 95(44):16398-16406.
[63] LONG X Q, WU Q, YANG L, et al.A photothermal aptasensor based on rolling circle amplification-enriched DNAzyme for portable detection of ochratoxin A in grape juice[J].International Journal of Biological Macromolecules, 2024, 269:132279.
[64] ALI M M, LI F, ZHANG Z Q, et al.Rolling circle amplification:A versatile tool for chemical biology, materials science and medicine[J].Chemical Society Reviews, 2014, 43(10):3324-3341.
[65] HE L Y, SHEN Z P, WANG J Q, et al.Simultaneously responsive microfluidic chip aptasensor for determination of kanamycin, aflatoxin M1, and 17β-estradiol based on magnetic tripartite DNA assembly nanostructure probes[J].Mikrochimica Acta, 2020, 187(3):176.
[66] PANG Y H, GUO L L, SHEN X F, et al.Rolling circle amplified DNAzyme followed with covalent organic frameworks:Cascade signal amplification of electrochemical ELISA for alfatoxin M1 sensing[J].Electrochimica Acta, 2020, 341:136055.
[67] 王姝凡, 张雁玲, 张会成, 等.基于信号放大策略和DNA纳米材料的表面增强拉曼生物传感器进展[J].化学传感器, 2021, 41(4):23-32.
WANG S F, ZHANG Y L, ZHANG H C, et al.Research progress in surface-enhanced Raman spectroscopy and biosensor based on signal amplification strategy and DNA nano materials[J].Chemical Sensors, 2021, 41(4):23-32.
[68] GUO T, WANG C C, ZHOU H Y, et al.A facile aptasensor based on polydopamine nanospheres for high-sensitivity sensing of T-2 toxin[J].Analytical Methods, 2021, 13(24):2654-2658.
[69] JALALIAN S H, RAMEZANI M, DANESH N M, et al.A novel electrochemical aptasensor for detection of aflatoxin M1 based on target-induced immobilization of gold nanoparticles on the surface of electrode[J].Biosensors and Bioelectronics, 2018, 117:487-492.
[70] GE G, WANG T L, LIU Z H, et al.A self-assembled DNA double-crossover-based fluorescent aptasensor for highly sensitivity and selectivity in the simultaneous detection of aflatoxin M1 and aflatoxin B1[J].Talanta, 2023, 265:124908.
Outlines

/