[1] OKECHUKWU V O, ADELUSI O A, KAPPO A P, et al.Aflatoxins:Occurrence, biosynthesis, mechanism of action and effects, conventional/emerging detection techniques[J].Food Chemistry, 2024, 436:137775.
[2] CAO H H, LIANG D, TANG K Z, et al.SERS and MRS signals engineered dual-mode aptasensor for simultaneous distinguishment of aflatoxin subtypes[J].Journal of Hazardous Materials, 2024, 462:132810.
[3] 李翀. 黄曲霉分生孢子萌发期代谢变化规律及其调控机制研究[D].武汉:华中农业大学, 2022.
LI C.The study on metabolic changes and regulation mechanism of Aspergillus flavus conidia during germination[D].Wuhan:Huazhong Agricultural University, 2022.
[4] 张焕, 高亚男, 郑楠, 等.黄曲霉毒素M1与赭曲霉毒素A联合作用诱导分化Caco-2细胞凋亡的机制[J].中国食品学报, 2019, 19(3):93-101.
ZHANG H, GAO Y N, ZHENG N, et al.Combined effects of aflatoxin M1and ochratoxin A on the apoptosis and mechanism in differentiated Caco-2 Cells[J].Journal of Chinese Institute of Food Science and Technology, 2019, 19(3):93-101.
[5] MIN L, FINK-GREMMELS J, LI D G, et al.An overview of aflatoxin B1 biotransformation and aflatoxin M1 secretion in lactating dairy cows[J].Animal Nutrition, 2021, 7(1):42-48.
[6] MIN L, LI D G, TONG X, et al.The challenges of global occurrence of aflatoxin M1 contamination and the reduction of aflatoxin M1 in milk over the past decade[J].Food Control, 2020, 117:107352.
[7] XIONG J L, WEN D F, ZHOU H L, et al.Occurrence of aflatoxin M1 in yogurt and milk in central-eastern China and the risk of exposure in milk consumers[J].Food Control, 2022, 137:108928.
[8] XU N N, XIAO Y P, XIE Q G, et al.Occurrence of aflatoxin B1 in total mixed rations and aflatoxin M1 in raw and commercial dairy milk in Northern China during winter season[J].Food Control, 2021, 124:107916.
[9] CORDEIRO F, BAER I, ROBOUCH P, et al.Setting maximum limits for trace elements in baby food in European legislation:The outcome of international measurement evaluation programme®-33[J].Food Additives & Contaminants.Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2013, 30(4):678-686.
[10] PECORELLI I, GUARDUCCI N, VON HOLST C, et al.Critical comparison of analytical performances of two immunoassay methods for rapid detection of aflatoxin M1 in milk[J].Toxins, 2020, 12(4):270.
[11] SHARMA P, PANDEY V, SHARMA M M M, et al.A review on biosensors and nanosensors application in agroecosystems[J].Nanoscale Research Letters, 2021, 16(1):136.
[12] LI R X, WEN Y, WANG F L, et al.Recent advances in immunoassays and biosensors for mycotoxins detection in feedstuffs and foods[J].Journal of Animal Science and Biotechnology, 2021, 12(1):108.
[13] SUN X Y, SUN J D, YE Y L, et al.Metabolic pathway-based self-assembled Au@MXene liver microsome electrochemical biosensor for rapid screening of aflatoxin B1[J].Bioelectrochemistry, 2023, 151:108378.
[14] CUI H N, AN K Q, WANG C Q, et al.A disposable ratiometric electrochemical aptasensor with exonuclease I-powered target recycling amplification for highly sensitive detection of aflatoxin B1[J].Sensors and Actuators B:Chemical, 2022, 355:131238.
[15] SUN C N, LIAO X F, HUANG P X, et al.A self-assembled electrochemical immunosensor for ultra-sensitive detection of ochratoxin A in medicinal and edible malt[J].Food Chemistry, 2020, 315:126289.
[16] RADI A E, EISSA A, WAHDAN T.Molecularly imprinted impedimetric sensor for determination of mycotoxin Zearalenone[J].Electroanalysis, 2020, 32(8):1788-1794.
[17] CINGOLANI M, MUMMOLO L, LUGLI F, et al.Protein aggregation detection with fluorescent macromolecular and nanostructured probes:Challenges and opportunities[J].New Journal of Chemistry, 2021, 45(32):14259-14268.
[18] HUANG F C, ZHANG Y C, LIN J H, et al.Biosensors coupled with signal amplification technology for the detection of pathogenic bacteria:A review[J].Biosensors, 2021, 11(6):190.
[19] WANG S C.Construction of DNA biosensors for mercury (Ⅱ) ion detection based on enzyme-driven signal amplification strategy[J].Biomolecules, 2021, 11(3):399.
[20] SINGH A, SHARMA A, AHMED A, et al.Recent advances in electrochemical biosensors:Applications, challenges, and future scope[J].Biosensors, 2021, 11(9):336.
[21] THURNER F, ALATRAKTCHI F A.Recent advances in electrochemical biosensing of aflatoxin M1 in milk-A mini review[J].Microchemical Journal, 2023, 190:108594.
[22] 惠媛媛, 王毕妮, 张富新, 等.基于还原氧化石墨烯的电化学适配体传感器对黄曲霉毒素M1的检测[J].食品工业科技, 2021, 42(14):249-256.
HUI Y Y, WANG B N, ZHANG F X, et al.An electrochemical aptasensor for detection of aflatoxin M1 based on reduced graphene oxide[J].Science and Technology of Food Industry, 2021, 42(14):249-256.
[23] PANDEY A K, RAJPUT Y S, SHARMA R, et al.Immobilized aptamer on gold electrode senses trace amount of aflatoxin M1[J].Applied Nanoscience, 2017, 7(8):893-903.
[24] ABERA B D, FALCO A, IBBA P, et al.Development of flexible dispense-printed electrochemical immunosensor for aflatoxin M1 detection in milk[J].Sensors, 2019, 19(18):3912.
[25] CHROUDA A, AYED D, ZINOUBI K, et al.Highly stable and ultra-sensitive amperometric aptasensor based on pectin stabilized gold nanoparticles on graphene oxide modified GCE for the detection of aflatoxin M1[J].Food Chemistry Advances, 2022, 1:100068.
[26] AHMADI S F, HOJJATOLESLAMY M, KIANI H, et al.Monitoring of Aflatoxin M1 in milk using a novel electrochemical aptasensor based on reduced graphene oxide and gold nanoparticles[J].Food Chemistry, 2022, 373:131321.
[27] KORDASHT H K, HASANZADEH M.Specific monitoring of aflatoxin M1 in real samples using aptamer binding to DNFS based on turn-on method:A novel biosensor[J].Journal of Molecular Recognition, 2020, 33(6):e2832.
[28] YANG D, HUI Y Y, LIU Y Y, et al.Novel dual-recognition electrochemical biosensor for the sensitive detection of AFM1 in milk[J].Food Chemistry, 2024, 433:137362.
[29] NGUYEN B H, TRAN L D, DO Q P, et al.Label-free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor[J].Materials Science and Engineering:C, 2013, 33(4):2229-2234.
[30] WANG B Z, AKIBA U, ANZAI J I.Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers:A review[J].Molecules, 2017, 22(7):1048.
[31] 靖乐. 基于梳型阳离子共聚物介导的DNA电化学生物传感器的构筑及其检测性能研究[D].武汉:中国地质大学, 2023.
JING L.Construction and detection performance of DNA electrochemical biosensor assisted by comb-type cationic copolymer[D].Wuhan:China University of Geosciences, 2023.
[32] GUO L L, WANG Y Y, PANG Y H, et al.In situ growth of covalent organic frameworks TpBD on electrode for electrochemical determination of aflatoxin M1[J].Journal of Electroanalytical Chemistry, 2021, 881:114931.
[33] HAMAMI M, MARS A, RAOUAFI N.Biosensor based on antifouling PEG/Gold nanoparticles composite for sensitive detection of aflatoxin M1 in milk[J].Microchemical Journal, 2021, 165:106102.
[34] KULIKOVA T N, PORFIREVA A V, EVTUGYN G A, et al.Electrochemical aptasensor with layer-by-layer deposited polyaniline for aflatoxin M1 voltammetric determination[J].Electroanalysis, 2019, 31(10):1913-1924.
[35] ZHANG M K, GUO X D.Emerging strategies in fluorescent aptasensor toward food hazard aflatoxins detection[J].Trends in Food Science & Technology, 2022, 129:621-633.
[36] 张小凡. 基于DNA链置换策略的荧光传感分析方法及性能研究[D].青岛:青岛科技大学, 2023.
ZHANG X F.Study on fluorescence sensing analysis method and performance based on DNA strand displacement strategy[D].Qingdao:Qingdao University of Science & Technology, 2023.
[37] 李新. 基于toehold链置换辅助目标循环放大的新型荧光生物传感器的研究[D].重庆:西南大学, 2017.
LI X.Study on a novel fluorescence biosensor based on toehold strand displacement reactions aided target recycling amplification[D].Chongqing:Southwest University, 2017.
[38] LI H, YANG D B, LI P W, et al.Palladium nanoparticles-based fluorescence resonance energy transfer aptasensor for highly sensitive detection of aflatoxin M1 in milk[J].Toxins, 2017, 9(10):318.
[39] 郭婷, 林淑凤, 马良, 等.基于磁性纳米材料和适配体的荧光传感器检测牛奶中黄曲霉毒素M1[J].食品与发酵工业, 2019, 45(5):218-223.
GUO T, LIN S F, MA L, et al.A fluorescent biosensor based on magnetic nanoparticles and aptamer for detecting AFM1 in milk[J].Food and Fermentation Industries, 2019, 45(5):218-223.
[40] SAMEIYAN E, KHOSHBIN Z, LAVAEE P, et al.A bivalent binding aptamer-cDNA on MoS2 nanosheets based fluorescent aptasensor for detection of aflatoxin M1[J].Talanta, 2021, 235:122779.
[41] 蒲源, 王丹, 钱骏, 等.荧光纳米材料及其生物成像应用[J].中国材料进展, 2017, 36(2):103-111.
PU Y, WANG D, QIAN J, et al.Fluorescent nanomaterials and their applications in bioimaging[J].Materials China, 2017, 36(2):103-111.
[42] SUN J D, LI M, XING F G, et al.Novel dual immunochromatographic test strip based on double antibodies and biotin-streptavidin system for simultaneous sensitive detection of aflatoxin M1 and ochratoxin A in milk[J].Food Chemistry, 2022, 375:131682.
[43] FORCADA S, SÁNCHEZ-VISEDO A, MELENDRERAS C, et al.Design and evaluation of a competitive phosphorescent immunosensor for aflatoxin M1 quantification in milk samples using Mn:ZnS quantum dots as antibody tags[J].Chemosensors, 2022, 10(2):41.
[44] SU Z X, ZHAO G Y, DOU W C.Determination of trace aflatoxin M1 (AFM1) residue in milk by an immunochromatographic assay based on (PEI/PSS)4 red silica nanoparticles[J].Mikrochimica Acta, 2020, 187(12):658.
[45] SINGH H, SINGH S, BHARDWAJ S K, et al.Development of carbon quantum dot-based lateral flow immunoassay for sensitive detection of aflatoxin M1 in milk[J].Food Chemistry, 2022, 393:133374.
[46] WANG J, JIANG C X, YUAN J R, et al.Hue recognition competitive fluorescent lateral flow immunoassay for aflatoxin M1 detection with improved visual and quantitative performance[J].Analytical Chemistry, 2022, 94(30):10865-10873.
[47] ZHOU J J, LIU Y T, DU X P, et al.Recent advances in design and application of nanomaterials-based colorimetric biosensors for agri-food safety analysis[J].ACS Omega, 2023, 8(49):46346-46361.
[48] SADIQ Z, SAFIABADI TALI S H, HAJIMIRI H, et al.Gold nanoparticles-based colorimetric assays for environmental monitoring and food safety evaluation[J].Critical Reviews in Analytical Chemistry, 2024, 54(7):2209-2244.
[49] 苏柳, 贺伟华, 张干, 等.两种常用适配体的纳米金比色法快速检测牛奶中黄曲霉毒素M1的评价研究[J].食品工业科技, 2024, 45(8):284-292.
SU L, HE W H, ZHANG G, et al.Evaluation of gold nanoparticles colorimetric sensing based on two commonly aptamer for rapid detecting aflatoxin M1 in milk[J].Science and Technology of Food Industry, 2024, 45(8):284-292.
[50] LERDSRI J, SOONGSONG J, LAOLUE P, et al.Reliable colorimetric aptasensor exploiting 72-Mers ssDNA and gold nanoprobes for highly sensitive detection of aflatoxin M1 in milk[J].Journal of Food Composition and Analysis, 2021, 102:103992.
[51] JALALIAN S H, LAVAEE P, RAMEZANI M, et al.An optical aptasensor for aflatoxin M1 detection based on target-induced protection of gold nanoparticles against salt-induced aggregation and silica nanoparticles[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2021, 246:119062.
[52] 刘玉婷, 陆清, 唐志永, 等.基于氧化还原型纳米酶的比色传感器在食品安全检测中的研究进展[J].食品科学, 2024,45(22):311-321.
LIU Y T, LU Q, TANG Z Y, et al.Research progress in colorimetric sensors based on redox-type nanozymes for food safety detection[J].Food Science, 2024,45(22):311-321.
[53] WEI Y, HUANG L H, SHI Z F, et al.Smartphone-integrated colorimetric sensor for rapid and highly selective detection of spermine in food based on the laccase-mimicking activity of flower-shaped Mn3O4 nanoparticles[J].Microchemical Journal, 2024, 198:110148.
[54] QIN S, LIU B, XUE Y T, et al.A three-dimensional network structure of metal-based nanozymes for the construction of colorimetric sensors for the detection of antioxidants[J].Analytical Methods, 2024, 16(15):2292-2300.
[55] WEI X J, MA P F, IMRAN MAHMOOD K, et al.Screening of a high-affinity aptamer for aflatoxin M1 and development of its colorimetric aptasensor[J].Journal of Agricultural and Food Chemistry, 2023, 71(19):7546-7556.
[56] ESMAELPOURFARKHANI M, RAMEZANI M, ALIBOLANDI M, et al.CRISPR-Cas12a-based colorimetric aptasensor for aflatoxin M1 detection based on oxidase-mimicking activity of flower-like MnO2 nanozymes[J].Talanta, 2024, 271:125729.
[57] 席强. 光学生物传感中信号放大策略与石墨烯类纳米材料的应用[D].长沙:湖南大学, 2015.
XI Q.Signal amplification strategies and graphene-type nanomaterials used in optical biosensing technology[D].Changsha:Hunan University, 2015.
[58] MA L, GUO T, PAN S L, et al.A fluorometric aptasensor for patulin based on the use of magnetized graphene oxide and DNase I-assisted target recycling amplification[J].Mikrochimica Acta, 2018, 185(10):487.
[59] 刘萌. 基于酶辅助信号放大的荧光生物传感器的构建及其应用研究[D].济南:山东师范大学, 2021.
LIU M.Construction of enzyme assisted signal a mplification-based fluorescence biosensors for biomedical applications[D].Jinan:Shandong Normal University, 2021.
[60] GUO X D, WEN F, QIAO Q Q, et al.A novel graphene oxide-based aptasensor for amplified fluorescent detection of aflatoxin M1 in milk powder[J].Sensors, 2019, 19(18):3840.
[61] ZHANG F Y, LIU L Y, NI S N, et al.Turn-on fluorescence aptasensor on magnetic nanobeads for aflatoxin M1 detection based on an exonuclease Ⅲ-assisted signal amplification strategy[J].Nanomaterials, 2019, 9(1):104.
[62] WANG S Y, ZONG Z W, XU J G, et al.Recognition-activated primer-mediated exponential rolling circle amplification for signal probe production and ultrasensitive visual detection of ochratoxin A with nucleic acid lateral flow strips[J].Analytical Chemistry, 2023, 95(44):16398-16406.
[63] LONG X Q, WU Q, YANG L, et al.A photothermal aptasensor based on rolling circle amplification-enriched DNAzyme for portable detection of ochratoxin A in grape juice[J].International Journal of Biological Macromolecules, 2024, 269:132279.
[64] ALI M M, LI F, ZHANG Z Q, et al.Rolling circle amplification:A versatile tool for chemical biology, materials science and medicine[J].Chemical Society Reviews, 2014, 43(10):3324-3341.
[65] HE L Y, SHEN Z P, WANG J Q, et al.Simultaneously responsive microfluidic chip aptasensor for determination of kanamycin, aflatoxin M1, and 17β-estradiol based on magnetic tripartite DNA assembly nanostructure probes[J].Mikrochimica Acta, 2020, 187(3):176.
[66] PANG Y H, GUO L L, SHEN X F, et al.Rolling circle amplified DNAzyme followed with covalent organic frameworks:Cascade signal amplification of electrochemical ELISA for alfatoxin M1 sensing[J].Electrochimica Acta, 2020, 341:136055.
[67] 王姝凡, 张雁玲, 张会成, 等.基于信号放大策略和DNA纳米材料的表面增强拉曼生物传感器进展[J].化学传感器, 2021, 41(4):23-32.
WANG S F, ZHANG Y L, ZHANG H C, et al.Research progress in surface-enhanced Raman spectroscopy and biosensor based on signal amplification strategy and DNA nano materials[J].Chemical Sensors, 2021, 41(4):23-32.
[68] GUO T, WANG C C, ZHOU H Y, et al.A facile aptasensor based on polydopamine nanospheres for high-sensitivity sensing of T-2 toxin[J].Analytical Methods, 2021, 13(24):2654-2658.
[69] JALALIAN S H, RAMEZANI M, DANESH N M, et al.A novel electrochemical aptasensor for detection of aflatoxin M1 based on target-induced immobilization of gold nanoparticles on the surface of electrode[J].Biosensors and Bioelectronics, 2018, 117:487-492.
[70] GE G, WANG T L, LIU Z H, et al.A self-assembled DNA double-crossover-based fluorescent aptasensor for highly sensitivity and selectivity in the simultaneous detection of aflatoxin M1 and aflatoxin B1[J].Talanta, 2023, 265:124908.