Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (19): 205-209    DOI: 10.13995/j.cnki.11-1802/ts.023710
  分析与检测 本期目录 | 过刊浏览 | 高级检索 |
苹果可溶性固形物的可见/近红外无损检测
孟庆龙1,2, 尚静1,2, 黄人帅1,2, 陈露涛1, 张艳2,*
1(贵阳学院 食品与制药工程学院,贵州 贵阳,550005);
2(贵阳学院 农产品无损检测工程研究中心,贵州 贵阳,550005)
Nondestructive detection of soluble solids content in apple by visible-near infrared spectroscopy
MENG Qinglong1,2, SHANG Jing1,2, HUANG Renshuai1,2, CHEN Lutao1, ZHANG Yan2,*
1(Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang 550005, China);
2(Research Center of Nondestructive Testing for Agricultural Products, Guiyang University, Guiyang 550005, China)
下载:  HTML   PDF (2138KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用可见/近红外光谱对苹果可溶性固形物含量进行检测,并建立了最优预测模型。通过400~1 000 nm高光谱成像系统采集了120个“富士”苹果图像,分析比较了二阶导数(second derivative,SD)、标准正态变换(standard normal variation,SNV)以及多元散射校正(multi-scatter calibration,MSC)3种光谱预处理方法对预测模型的检测效果;分别应用连续投影算法(successive proiection algorithm,SPA)和竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)对光谱数据进行降维,进而建立基于特征光谱的误差反向传播(error back propagation,BP)网络和多元线性回归(multiple linear regression,MLR)预测模型。结果表明,二阶导数预处理后的BP网络模型优于原始光谱及其他预处理方法;通过提取特征波长建立的SPA-BP网络模型的预测性能最优,其预测集相关系数rp和均方根误差(root mean square error of prediction set,RMSEP)分别为0.87和0.52。这表明基于可见/近红外光谱检测苹果可溶性固形物含量是可行的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟庆龙
尚静
黄人帅
陈露涛
张艳
关键词:  可见/近红外光谱  苹果  可溶性固形物含量  BP网络  数据降维  无损检测    
Abstract: A model of predicting soluble solids content (SSC) of apple by visible-near infrared (Vis/NIR) spectroscopy was established and optimized. The hyperspectral images of 120 “Fuji” apples over 400-1 000 nm were obtained by hyperspectral imaging acquisition system. The effectiveness of the prediction model with pretreatment by second derivative, standard normal variation and multi-scatter calibration was compared and evaluated. Then the successive projection algorithm (SPA) and competitive adaptive reweighted sampling (CARS) methods were used to conduct data mining. Moreover, BP model and multiple linear regression(MLR) model were established based on characteristic spectra. The results showed that BP model with pretreatment by SD was superior to full spectra and other spectral pretreatments. And SPA-BP model based on characteristic spectra had an excellent prediction ability. The correlation coefficient rp and root mean square error of prediction (RMSEP) were 0.87 and 0.52, respectively. These results indicated that it's feasible to determine SSC of apples by Vis/NIR spectroscopy.
Key words:  visible-near infrared spectroscopy    apple    soluble solids content    BP network    data mining    nondestructive detection
收稿日期:  2020-02-21      修回日期:  2020-06-05                发布日期:  2020-11-02      期的出版日期:  2020-10-15
基金资助: 贵州省科技计划项目(黔科合基础[2020]1Y270); 贵州省普通高等学校工程研究中心项目(黔教合KY字[2016]017); 贵阳学院科研资金(GYU-KY-[2020]); 大学生创新创业训练计划项目(20195201361)
作者简介:  第一作者:博士,副教授(张艳教授为通讯作者,E-mail:Eileen_zy001@sohu.com)
引用本文:    
孟庆龙,尚静,黄人帅,等. 苹果可溶性固形物的可见/近红外无损检测[J]. 食品与发酵工业, 2020, 46(19): 205-209.
MENG Qinglong,SHANG Jing,HUANG Renshuai,et al. Nondestructive detection of soluble solids content in apple by visible-near infrared spectroscopy[J]. Food and Fermentation Industries, 2020, 46(19): 205-209.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023710  或          http://sf1970.cnif.cn/CN/Y2020/V46/I19/205
[1] 董金磊,郭文川.采后猕猴桃可溶性固形物含量的高光谱无损检测[J].食品科学,2015,36(16):101-106.
[2] 尚静,孟庆龙,张艳,等.紫外/可见光谱技术无损检测李子可溶性固形物含量[J].食品工业科技,2020,41(3):228-231.
[3] 汪金花,吴兵,徐国强,等.水泥胶砂中水泥水化的高光谱特征分析[J].硅酸盐通报,2019,38(11):3 646-3 653.
[4] 王芹志,强锋,何建国,等.基于可见-近红外光谱预测灵武长枣脆度及模型优化[J].食品与发酵工业,2017,43(3):205-211.
[5] 孙炳新,匡立学,徐方旭,等.苹果脆度的近红外无损检测[J].食品与发酵工业,2013,39(5):185-189.
[6] JIANG J,CEN H,ZHANG C,et al.Nondestructive quality assessment of chili peppers using near-infrared hyperspectral imaging combined with multivariate analysis[J].Postharvest Biology and Technology,2018,146:147-154.
[7] 孙旭东,刘燕德,李轶凡,等.鸭梨黑心病和可溶性固形物含量同时在线检测研究[J].农业机械学报,2016,47(1):232-238.
[8] HOU J,ZHANG Y,SUN Y,et al.Prediction of firmness and pH for “Golden Delicious” apple based on elasticity index from modal analysis[J].Journal of Food Science,2018,83(1):1-9.
[9] 郭志明,赵春江,黄文倩,等.苹果糖度高光谱图像可视化预测的光强度校正方法[J].农业机械学报,2015,46(7):227-232.
[10] 杨峰,范亚民,李建龙,等.高光谱数据估测稻麦叶面积指数和叶绿素密度[J].农业工程学报,2010,26(2):237-243.
[11] 叶建秋,黄丹平,田建平,等.高光谱图像技术检测大曲发酵过程中的水分含量[J].食品与发酵工业,2020,46(9):250-254.
[12] GUO W C,ZHAO F,DONG J L.Nondestructive measurement of soluble solids content of kiwifruits using near-infrared hyperspectral imaging[J].Food Analytical Methods,2016,9:38-47.
[13] LI B C,HOU B L,ZHANG D W,et al.Pears characteristics (soluble solids content and firmness prediction, varieties) testing methods based on visible-near infrared hyperspectral imaging[J].Optik,2016,127(5):2 624-2 630.
[14] FAN S,HUANG W,GUO Z,et al.Prediction of soluble solids content and firmness of pears using hyperspectral reflectance imaging[J].Food Analytical Methods,2015,8:1 936-1 946.
[15] YU X,LU H,WU D.Development of deep learning method for predicting firmness and soluble solid content of postharvest Korla fragrant pear using Vis/NIR hyperspectral reflectance imaging[J].Postharvest Biology and Technology,2018,141:39-49.
[16] PU H,LIU D,WANG L,et al.Soluble solids content and pH prediction and maturity discrimination of lychee fruits using visible and near infrared hyperspectral imaging[J].Food Analytical Methods,2016,9(1):235-244.
[17] 李瑞,傅隆生.基于高光谱图像的蓝莓糖度和硬度无损测量[J].农业工程学报,2017,33(S1):362-366.
[18] LEIVA-VALENZUELA G A,LU R,AGUILERA J M.Assessment of internal quality of blueberries using hyperspectral transmittance and reflectance images with whole spectra or selected wavelengths[J].Innovative Food Science & Emerging Technologies,2014,24:2-13.
[19] GALVÀO R K H,ARAUJO M C U,JOSÉ G E,et al.A method for calibration and validation subset partitioning[J].Talanta,2005,67(4):736-740.
[20] 倪力军,张立国.基础化学计量学及其应用[M].上海:华东理工大学出版社,2011.
[1] 王婧, 高娉娉, 田秀, 梁丽红, 李敏, 韩舜愈. 粟酒裂殖酵母与酿酒酵母顺序接种发酵对干红葡萄酒品质的影响[J]. 食品与发酵工业, 2021, 47(9): 84-90.
[2] 周启萍, 张兆云, 袁翔, 申红梅, 张志华, 李霞, 马筱菡, 杨富民. 啤特果果汁流变学特性研究[J]. 食品与发酵工业, 2021, 47(8): 76-81.
[3] 金刚, 张雪, 谷晓博, 王辉, 白雪菲, 张众, 盖昱梓, 马雯. 贺兰山东麓不同子产区赤霞珠葡萄自然发酵对葡萄酒香气的影响[J]. 食品与发酵工业, 2021, 47(7): 153-160.
[4] 杨晨昱, 袁鸿飞, 马惠玲, 任亚梅, 任小林. 基于傅里叶近红外光谱和电子鼻技术的苹果霉心病无损检测[J]. 食品与发酵工业, 2021, 47(7): 211-216.
[5] 宋菲红, 蒋玉梅, 盛文军, 李霁昕, 姚静, 孙永蓉, 高雨寒, 韩舜愈. 苹果沙棘复合果泥配方优化及品质分析[J]. 食品与发酵工业, 2021, 47(6): 184-194.
[6] 盖昱梓, 孙静娴, 黄刚, 金刚. 苹果酸-乳酸发酵细菌乙醇胁迫应答机制研究进展[J]. 食品与发酵工业, 2021, 47(3): 288-293.
[7] 浩楠, 马腾臻, 杨学山, 张波, 韩舜愈. 不同接种方式下小片球菌C30对‘赤霞珠’葡萄酒品质的影响[J]. 食品与发酵工业, 2021, 47(1): 71-78.
[8] 雷佳蕾, 田丹, 薛佳, 邓红, 孟永宏, 郭玉蓉. δD,δ18O和δ13C同位素比率质谱法在鲜榨苹果汁鉴伪中的应用[J]. 食品与发酵工业, 2020, 46(9): 234-242.
[9] 朱秀灵, 叶精勤, 盛伊健, 孔雯瑾, 陈廷然, 傅锡鹏, 戴清源. 体外模拟消化对苹果多酚及其抗氧化活性的影响[J]. 食品与发酵工业, 2020, 46(8): 63-71.
[10] 朱敏, 孙婷, 白直真, 罗惠波, 田建平, 黄丹. 基于可见光/近红外高光谱技术的窖泥总酸的分布[J]. 食品与发酵工业, 2020, 46(8): 111-117.
[11] 蔡德玲, 唐春华, 梁玉英, 曾川, 彭碧宁. 融合近红外光谱和颜色参数的草莓可溶性固形物含量定量分析模型构建[J]. 食品与发酵工业, 2020, 46(7): 218-224.
[12] 董迪, 潘嘹, 卢立新. 包装薄膜对生鲜牛肉可见光谱无损检测的干扰及处理方法研究[J]. 食品与发酵工业, 2020, 46(7): 234-238.
[13] 李根, 初乐, 马寅斐, 和法涛, 丁辰, 朱风涛, 赵岩. 新型热和非热加工对非浓缩还原苹果汁品质影响的研究现状[J]. 食品与发酵工业, 2020, 46(6): 301-306.
[14] 孟庆龙, 尚静, 黄人帅, 张艳. 基于光纤光谱技术无损检测猕猴桃硬度[J]. 食品与发酵工业, 2020, 46(22): 226-231.
[15] 柴鹏飞, 李林洁, 刘静, 赵方圆, 宋佳, 郑宇, 石磊, 万守朋, 王敏. 基于聚类分析的浓缩苹果汁风味品质分析与评价[J]. 食品与发酵工业, 2020, 46(2): 94-101.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn