Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (6): 56-61    DOI: 10.13995/j.cnki.11-1802/ts.025433
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
超高压处理对乳清分离蛋白结构及致敏蛋白含量的影响
党慧杰1,2, 郑远荣2, 刘振民2*
1(上海海洋大学 食品学院,上海,201306)
2(乳业生物技术国家重点实验室,上海乳业生物工程技术研究中心,光明乳业股份有限公司乳业研究院,上海,200436)
Effects of ultra-high pressure on the structure of whey protein isolate and the content of allergenic protein
DANG Huijie1,2, ZHENG Yuanrong2, LIU Zhenmin2*
1(College of Food Science and Technology,Shanghai Ocean University, Shanghai 201306, China)
2(State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China)
下载:  HTML   PDF (2184KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以乳清分离蛋白为研究对象,通过测定圆二色性光谱、巯基含量以及内源性荧光光谱等研究了不同超高压水平(100、200、400和600 MPa)对其二级、三级结构的影响,并采用水解度测定、十二烷基硫酸钠-聚丙烯酰胺凝胶电泳以及2个标志性致敏蛋白(β-乳球蛋白和α-乳白蛋白)含量的检测来解析超高压对乳清分离蛋白致敏性的影响。结果表明,超高压处理能够使乳清分离蛋白的α-螺旋和β-转角部分转化为β-折叠和无规则卷曲,可以增强乳清分离蛋白的巯基含量,在400 MPa时,表面巯基含量提高了104.82%,也造成了乳清分离蛋白内源性荧光强度的显著变化以及最大吸收波长的红移,电泳图谱以及水解度未显示出明显差异。通过酶联免疫吸附实验原理检测致敏蛋白含量发现,超高压可以使α-乳白蛋白含量显著减少,但是,400 MPa的超高压处理却使β-乳球蛋白含量增加。综上表明,超高压处理能够显著改变乳清分离蛋白的二级、三级结构,暴露出结构内部的疏水基团,并对致敏蛋白产生影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
党慧杰
郑远荣
刘振民
关键词:  超高压  乳清分离蛋白  结构  致敏性  十二烷基硫酸钠-聚丙烯酰胺凝胶电泳    
Abstract: In this study, whey protein isolate (WPI) was subjected to ultra-high pressure(UHP) at different treatments (100、200、400 and 600 MPa). The secondary and tertiary structures of WPI was studied by measuring circular dichroism (CD), sulfhydryl groups content, and endogenous fluorescence spectroscopy. The degree of hydrolysis (DH), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-page), and the contents of two marker sensitizing proteins, β-lactoglobulin (β-LG) and α-lactalbumin (α-LA), were used to analyze the effect of UHP on the sensitization of WPI. The results showed that the UHP treatment transformed the α-helix and β-turn of WPI into a β-sheet and random coil. And it also enhanced the sulfhydryl contents of WPI. At 400 MPa, the surface sulfhydryl content increased by 104.82%. The UHP treatment also caused a significant change in the endogenous fluorescence intensity of WPI and red shift of maximum absorption wavelength. The SDS-page pattern and degree of hydrolysis of the samples treated with UHP did not show significant differences. Furthermore, ELISA detection found that UHP could significantly reduce the content of α-LA, however, the UHP treatment at 400MPa increased the content of β-LG. These results indicate that UHP can significantly alter the secondary and tertiary structure of WPI, expose the hydrophobic groups inside the structure, and influence its allergenic protein.
Key words:  ultra-high pressure    whey protein isolates    structure    allergenicity    sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-page)
收稿日期:  2020-08-21      修回日期:  2020-09-30           出版日期:  2021-03-25      发布日期:  2021-04-15      期的出版日期:  2021-03-25
基金资助: 国家重点研发计划项目(2018YFC1604205);上海乳业生物工程技术研究中心项目(19DZ228140)
作者简介:  硕士研究生(刘振民教授级高级工程师为通讯作者,E-mail:liuzhenmin@brightdairy.com)
引用本文:    
党慧杰,郑远荣,刘振民. 超高压处理对乳清分离蛋白结构及致敏蛋白含量的影响[J]. 食品与发酵工业, 2021, 47(6): 56-61.
DANG Huijie,ZHENG Yuanrong,LIU Zhenmin. Effects of ultra-high pressure on the structure of whey protein isolate and the content of allergenic protein[J]. Food and Fermentation Industries, 2021, 47(6): 56-61.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025433  或          http://sf1970.cnif.cn/CN/Y2021/V47/I6/56
[1] VILLA C, COSTA J, OLIVEIRA M B P P, et al.Bovine milk allergens:A comprehensive review[J].Compr Rev Food Sci F, 2018, 17(1):137-164.
[2] BLOOM K A, HUANG F R, BENCHARITIWONG R, et al.Effect of heat treatment on milk and egg proteins allergenicity [J].Pediatr Allergy Immunol, 2014, 25(8):740-746.
[3] BU G H, LUO Y K, CHEN F S, et al.Milk processing as a tool to reduce cow's milk allergenicity:A mini-review [J].Dairy Sci Technol, 2013, 93(3):211-223.
[4] CHEN H, HONG Q, ZHONG J, et al.The enhancement of gastrointestinal digestibility of β-LG by dynamic high-pressure microfluidization to reduce its antigenicity [J].International Journal of Food Science & Technology, 2019, 54(5):1 677-1 683.
[5] CARULLO D, ABERA B D, CASAZZA A A, et al.Effect of pulsed electric fields and high pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris [J].Algal Research, 2018, 31:60-69.
[6] CARULLO D, DONSÍ F, FERRARI G.Influence of high-pressure homogenization on structural properties and enzymatic hydrolysis of milk proteins [J].LWT-Food Science and Technology, 2020, 130:109 657.
[7] ALI A, LE P I, HUANG N, et al.Effect of high pressure homogenization on the structure and the interfacial and emulsifying properties of β-lactoglobulin [J].International Journal of Pharmaceutics, 2018, 537(1):111-121.
[8] SØRENSEN H, MORTENSEN K, SØRLAND G H, et al.Dynamic ultra-high pressure homogenisation of milk casein concentrates:Influence of casein content [J].Innov Food Sci Emerg, 2014, 26:143-152.
[9] 庞佳坤, 郑远荣, 刘振民,等.超高压对乳清分离蛋白结构和抗氧化活性的影响 [J].食品与发酵工业, 2020, 46(4):72-77.PANG J K, ZHENG Y R, LIU Z M, et al.Effects of ultra-high pressure on structure and antioxidant activity of whey protein isolates[J].Food and Fermentation Industries, 2020, 46(4):72-77.
[10] PITTIA P, WILDE P J, HUSBAND F A, et al.Functional and structural properties of β-lactoglobulin as affected by high pressure treatment[J].J Food Sci, 1996, 61(6):1 123-1 128.
[11] HUPPERTZ T, FOX P F, KRUIF K G D, et al.High pressure-induced changes in bovine milk proteins:A review [J].Biochimica Et Biophysica Acta, 2006, 1 764(3):593-598.
[12] AMBROSI V, POLENTA G, GONZALEZ C, et al.High hydrostatic pressure assisted enzymatic hydrolysis of whey proteins [J].Innov Food Sci Emerg, 2016,38:294-301.
[13] YU C, WU F, CHA Y, et al. Effects of high-pressure homogenization at different pressures on structure and functional properties of oyster protein isolates[J]. International Journal of Food Engineering, 2018, 14(4): 9.
[14] WHITMORE L, WALLACE B A.DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data [J].Nucleic Acids Research, 2004, 32(2):668-673.
[15] LOBLEY A, WHITMORE L, WALLACE B A.DICHROWEB:An interactive website for the analysis of protein secondary structure from circular dichroism spectra [J].Bioinformatics, 2002, 18(1):211-212.
[16] MAFORIMBO E, SKURRAY G R, NGUYEN M.Evaluation of l-ascorbic acid oxidation on SH concentration in soy-wheat composite dough during resting period [J].LWT - Food Science and Technology, 2007, 40(2):338-343.
[17] GINA C U M, VÉRONIQUE P, LOĬC H, et al.Impact of a high hydrostatic pressure pretreatment on the separation of bioactive peptides from flaxseed protein hydrolysates by electrodialysis with ultrafiltration membranes [J].Separation & Purification Technology, 2019, 211:242-251.
[18] SPELLMAN D, MCEVOY E, O'CUINN G, et al.Proteinase and exopeptidase hydrolysis of whey protein:Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis [J].Int Dairy J, 2003, 13(6):447-453.
[19] ORCAJO J, LAVILLA M, MARTÍNEZ-DE-MARAÑÓN I.Specific and sensitive ELISA for measurement of IgE-binding variations of milk allergen beta-lactoglobulin in processed foods [J].Anal Chim Acta, 2019, 1 052:163-169.
[20] ZHANG T, JIANG B, MIAO M, et al.Combined effects of high-pressure and enzymatic treatments on the hydrolysis of chickpea protein isolates and antioxidant activity of the hydrolysates [J].Food Chemistry, 2012, 135(3):904-912.
[21] TABILO-MUNIZAGA G, GORDON T A, VILLALOBOS-CARVAJAL R, et al.Effects of high hydrostatic pressure (HHP) on the protein structure and thermal stability of Sauvignon blanc wine [J].Food Chem, 2014, 155(15):214-220.
[22] LI H, ZHU K, ZHOU H, et al.Effects of high hydrostatic pressure treatment on allergenicity and structural properties of soybean protein isolate for infant formula [J].Food Chem, 2012, 132(2):808-814.
[23] LIU H H, KUO M I.Ultra high pressure homogenization effect on the proteins in soy flour [J].Food Hydrocolloid, 2016, 52:741-748.
[24] SIDDIQUE M A B, MARESCA P, PATARO G, et al.Effect of pulsed light treatment on structural and functional properties of whey protein isolate [J].Food Res Int, 2016, 87:189-196.
[25] GOLKAR A, MILANI J M, VASILJEVIC T.Altering allergenicity of cow's milk by food processing for applications in infant formula [J].Crit Rev Food Sci Nutr, 2019, 59(1):159-172.
[26] HINRICHS J, RADEMACHER B J J D R.High pressure thermal denaturation kinetics of whey proteins [J].J Dairy Res,2004, 71(4):480-488.
[27] BELLOQUE J, CHICÓN R, LÓPEZ-FANDIÑO R.Unfolding and refolding of beta-lactoglobulin subjected to high hydrostatic pressure at different pH values and temperatures and its influence on proteolysis [J].J Agric Food Chem, 2007, 55(13):5 282-5 288.
[28] LI M, MA Y, NGADI M O.Binding of curcumin to β-lactoglobulin and its effect on antioxidant characteristics of curcumin [J].Food Chem, 2013, 141(2):1 504-1 511.
[29] CHICÓN R, LÓPEZ-FANDIÑO R, ALONSO E, et al.Proteolytic pattern, antigenicity, and serum immunoglobulin E binding of β-lactoglobulin hydrolysates obtained by pepsin and high-pressure treatments[J].J Dairy Sci, 2008, 91(3):928-938.
[30] YIN S W, TANG C H, WEN Q B, et al.Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate:Effect of high-pressure treatment [J].Food Chem, 2008, 110(4):938-945.
[31] NIELSEN P M, PETERSEN D, DAMBMANN C.Improved method for determining food protein degree of hydrolysis[J].J Food Sci, 2001, 66(5):642-646.
[32] MICIN'SKI J, KOWALSKI I M, ZWIERZCHOWSKI G, et al.Characteristics of cow's milk proteins including allergenic properties and methods for its reduction [J].Polish Annals of Medicine, 2013, 20(1):69-76.
[1] 蒋彤, 纪杭燕, 柏玉香. Lactobacillus reuteri 121 4,6-α-葡萄糖基转移酶GtfBdN改性薯类淀粉产物结构及理化特性研究[J]. 食品与发酵工业, 2021, 47(9): 42-48.
[2] 李晨晨, 李梦丽, 张涛. 人乳寡糖的研究进展[J]. 食品与发酵工业, 2021, 47(9): 284-292.
[3] 刘志芳, 赵前程, 刘志东, 段蕊, 林娜, 张俊杰. 贝类多糖研究进展[J]. 食品与发酵工业, 2021, 47(9): 299-306.
[4] 陈晓思, 贺稚非, 王泽富, 李洪军. 过氧自由基对兔肉肌原纤维蛋白理化性质及结构的影响[J]. 食品与发酵工业, 2021, 47(8): 54-61.
[5] 刘昕, 张驰, 薛艾莲, 赵吉春, 曾凯芳, 明建. 超声-酶法提取的豆腐柴低酯果胶理化性质及结构表征[J]. 食品与发酵工业, 2021, 47(8): 108-115.
[6] 刘丹丹, 李昕沂, 罗晶晶, 王启会, 罗静, 王海燕. 超高压微射流均质技术对猕猴桃果酒品质的影响[J]. 食品与发酵工业, 2021, 47(8): 165-169.
[7] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[8] 赵颖颖, 李三影, 田金凤, 扶磊, 贾丰鲜, 李可, 吴丽丽, 白艳红. 超声波对不同盐浓度下肌原纤维蛋白溶解性的影响[J]. 食品与发酵工业, 2021, 47(7): 197-202.
[9] 肖叶, 叶精勤, 阎俊, 施文正, 卢瑛. 生物加工技术对水产品主要过敏原的致敏性消减作用研究进展[J]. 食品与发酵工业, 2021, 47(6): 274-279.
[10] 张晓晓, 柴智, 冯进, 崔莉, 李春阳, 李莹, 黄午阳. 牛蒡多糖的提取及生物活性研究进展[J]. 食品与发酵工业, 2021, 47(6): 280-288.
[11] 杨燕敏, 郑振佳, 高琳, 张砚垒, 张仁堂. 红枣多糖超声波提取、结构表征及抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(5): 120-126.
[12] 杨波, 王珂, 杨光, 吴君波, 江容安. 黄原胶的干热改性及复配增稠应用[J]. 食品与发酵工业, 2021, 47(4): 116-122.
[13] 牟方婷, 袁美, 石黎琳, 曾凡坤, 陈嘉, 张玉. 超声和微波辅助果胶酶处理对果胶结构的影响[J]. 食品与发酵工业, 2021, 47(4): 215-221.
[14] 孙洁, 李燕, 施文正, 汪之和. 虾类生物活性肽的研究进展[J]. 食品与发酵工业, 2021, 47(4): 261-268.
[15] 林诺怡, 成坚, 王琴, 马路凯, 梁嘉熹, 李素芬, 姚文倩, 刘袆帆. 柚皮蛋白的结构表征及细胞免疫活性初步研究[J]. 食品与发酵工业, 2021, 47(3): 59-65.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn