Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (24): 9-15    DOI: 10.13995/j.cnki.11-1802/ts.025531
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
基于高通量测序方法研究腌制麻竹笋发酵过程中细菌群落的动态演替
李薇1, 吴良如2, 索化夷1, 张甫生1, 郑炯1*
1(西南大学 食品科学学院,重庆,400715)
2(国家林业局竹子研究开发中心,浙江 杭州,310012)
Bacterial community dynamic succession during fermentation of pickled Ma bamboo shoots based on high-throughput sequencing
LI Wei1, WU Liangru2, SUO Huayi1, ZHANG Fusheng1, ZHENG Jiong1*
1(College of Food Science, Southwest University, Chongqing 400715, China)
2(China National Bamboo Research Center,Hangzhou 310012, China)
下载:  HTML   PDF (6526KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用高通量测序方法对盐质量浓度为5 g/100mL和15 g/100mL的腌制麻竹笋自然发酵过程中的细菌群落的动态演替进行研究。结果表明,2种盐浓度样本均以厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)和蓝藻细菌门(Cyanobacteria)为主要优势菌门(平均相对丰度>1%)。发酵前28 d两种盐浓度样本中细菌群落丰富度差异较小,低盐质量浓度(5 g/100mL)样本中的优势菌属有乳酸杆菌属(Lactobacillus)、乳球菌属(Lactococcus)、魏斯氏菌属(Weissella)和蓝藻细菌属(Cyanobacteria_norank),高盐质量浓度(15 g/100mL)样本则以乳酸杆菌属、气球菌属(Aerococcus)、蓝藻细菌属和海细菌属(Marinobacterium)为优势菌属。发酵35 d时菌群丰富度均大幅提升,低盐浓度样本菌群丰富度及均匀度均显著高于高盐浓度样本,并且前者菌群结构发生较大改变,而后者菌群结构变化幅度较小。该研究结果将为腌制竹笋的品质调控提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李薇
吴良如
索化夷
张甫生
郑炯
关键词:  麻竹笋  腌制发酵  高通量测序  细菌群落演替  盐浓度    
Abstract: High throughput sequencing was used to study the dynamic succession of the bacterial communities during natural fermentation of pickled Ma bamboo shoots with salt concentrations of 5 and 15 g/100mL. The results showed that Firmicutes, Proteobacteria and Cyanobacteria were the dominant bacteria (average relative abundance > 1%) in both samples. There was little difference in the abundance of the bacteria communities between the two samples in the first 28 days of the fermentation. The dominant bacteria genera in the low salt samples (5 g/100mL) were Lactobacillus, Lactococcus, Weissella and Cyanobacteria_norank, while the dominant bacteria genera in the high salt samples (15 g/100mL) were Lactobacillus, Aerococcus, Cyanobacteria_norank and Marinobacterium. After 35 days of the fermentation, the bacteria community abundance of both two samples increased significantly, and the flora richness and evenness of the low salt samples were significantly higher than those of the high salt samples, and the flora structure of the former changed greatly, while that of the latter changed slightly. The results provide theoretical basis for the quality control of pickled bamboo shoots.
Key words:  Ma bamboo(Dendrocalamus latiforus)shoots    pickling and fermentation    high-throughput sequencing    bacterial community succession    salt concentration
收稿日期:  2020-08-31      修回日期:  2020-09-24           出版日期:  2020-12-25      发布日期:  2021-01-13      期的出版日期:  2020-12-25
基金资助: 国家自然科学基金(31701617)
作者简介:  硕士研究生(郑炯副教授为通讯作者,E-mail:zhengjiong_swu@126.com)
引用本文:    
李薇,吴良如,索化夷,等. 基于高通量测序方法研究腌制麻竹笋发酵过程中细菌群落的动态演替[J]. 食品与发酵工业, 2020, 46(24): 9-15.
LI Wei,WU Liangru,SUO Huayi,et al. Bacterial community dynamic succession during fermentation of pickled Ma bamboo shoots based on high-throughput sequencing[J]. Food and Fermentation Industries, 2020, 46(24): 9-15.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025531  或          http://sf1970.cnif.cn/CN/Y2020/V46/I24/9
[1] 杨曼倩. 麻竹笋冰温保鲜技术研究[D].重庆:西南大学,2017.YANG M Q.Study on controlled freezing-point storage technology of bamboo shoots[D].Chongqing:Southwest University, 2017.
[2] 姚荷, 谭兴和.竹笋加工方法研究进展[J].中国酿造,2017,36(11):24-27.YAO H, TAN X H.Research progress of bamboo shoots processing methods[J].China Brewing, 2017,36(11):24-27.
[3] WU H C, ZHANG S Y, MA Y Y, et al.Comparison of microbial communities in the fermentation starter used to brew Xiaoqu liquor[J].Journal of the Institute of Brewing, 2017, 123(1):113-120.
[4] 刘国华, 叶正芳, 吴为中.土壤微生物群落多样性解析法:从培养到非培养[J].生态学报,2012,32(14):4 421-4 433.LIU G H, YE Z F, WU W Z.Culture-dependent and culture-independent approaches to studying soil microbial diversity[J].Acta Ecologica Sinica, 2012,32(14):4 421-4 433.
[5] PETROSINO J F, HIGHLANDER S, LUNA R A, et al.Metagenomic pyrosequencing and microbial identification[J].Clinical Chemistry, 2009, 55(5):856-866.
[6] YU J, GAO W, QING M J, et al.Identification and characterization of lactic acid bacteria isolated from traditional pickles in Sichuan, China[J].Journal of General and Applied Microbiology, 2012,58(3):163-172.
[7] TANG Y Y, ZHOU X R, HUANG S L, et al.Microbial community analysis of different qualities of pickled radishes by Illumina MiSeq sequencing[J].Journal of Food Safety, 2019, 39(2).DOI:10.1111/jfs.12596.
[8] LIU D Q, TONG C.Bacterial community diversity of traditional fermented vegetables in China[J].LWT-Food Science and Technology, 2017, 86:40-48.
[9] 汪莉莎, 陈光静, 郑炯, 等.大叶麻竹笋腌制过程中品质变化规律[J].食品与发酵工业,2013,39(10):73-77.WANG L S, CHEN G J, ZHENG J, et al.Study on the change in quality of bamboo shoots during pickling[J].Food and Fermentation Industries, 2013,39(10):73-77.
[10] 陈光静, 汪莉莎, 郑炯, 等.食盐质量浓度对大叶麻竹笋腌制过程中品质特性的影响[J].食品科学,2013,34(15):48-52.CHEN G J, WANG L S, ZHENG J, et al.Effect of salt concentration on quality of bamboo shoots during pickling[J].Food Science, 2013,34(15):48-52.
[11] 郑炯, 夏雪娟, 叶秀娟, 等.PCR-DGGE技术分析腌制麻竹笋中微生物多样性[J].食品科学,2014,35(21):170-174.ZHENG J, XIA X J, YE X J, et al.Diversity of microbial flora from pickled ma bamboo shoots analyzed by PCR-DGGE[J].Food Science, 2014,35(21):170-174.
[12] 夏雪娟, 李冠楠, 叶秀娟, 等.麻竹笋腌制过程中细菌群落动态变化分析[J].中国食品学报,2015,15(11):206-211.XIA X J, LI G N, YE X J, et al.Dynamic changes of bacteria community diversity during the fermentation of pickled ma bamboo shoots[J].Journal of Chinese Institute of Food Science and Technology, 2015,15(11):206-211.
[13] 张承铭. 辽河保护区典型湿地净化特性及微生物群落结构研究[D].西安:长安大学,2017.ZHANG C M.Study on the purification characteristics and bacterial community structures in constructed wetland of the Liao River Conservation Area[D].Xi′an:Chang′an University, 2017.
[14] 郭俊.上海市饮用水源水库微生物群落变化研究[D].上海:上海师范大学,2020.GUO J.Changes of microbial community in drinking water source reservoirs in Shanghai[D].Shanghai:Shanghai Normal University, 2020.
[15] JIANG J, SHI B, ZHU D Q, et al.Characterization of a novel bacteriocin produced by Lactobacillus sakei LSJ618 isolated from traditional Chinese fermented radish[J].Food Control, 2012, 23:338-344.
[16] ZABAT M A, SANO W H, WURSTER J I, et al.Microbial community analysis of sauerkraut fermentation reveals a stable and rapidly established community[J].Foods, 2018, 7(5):77.
[17] BJORKROTH K J, SCHILLINGER U, GEISEN R, et al.Taxonomic study of Weissella confusa and description of Weissella cibaria sp.nov., detected in food and clinical samples[J].International Journal of Systematic and Evolutionary Microbiology, 2002, 52(1):141-148.
[18] ASO Y, TAKEDA A, SATO M, et al.Characterization of lactic acid bacteria coexisting with a nisin Z producer in Tsuda-turnip pickles[J].Current Microbiology, 2008, 57(1):89-94.
[19] CROWLEY S, MAHONY J, VAN S D.Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives[J].Trends in Food Science & Technology, 2013, 33(2):93-109.
[20] 李恒, 陈功, 伍亚龙, 等.高通量测序方法研究传统四川泡菜母水中微生物群落的动态变化[J].食品科学,2018,39(24):131-138.LI H, CHEN G, WU Y L, et al.Analysis of microbial community dynamics of traditional Sichuan paocai brine by high-throughput sequencing[J].Food Science, 2018,39(24):131-138.
[21] HOLT J G.Bergey′s Manual of Determinative Bacteriology(9th) ed[M].Baltimore:Williams and Wilkins, 2004:178-711.
[22] CHENG L L, LUO J F, LI P, et al.Microbial diversity and flavor formation in onion fermentation[J].Food & Function, 2014, 5(9):2 338-2 347.
[23] RHEE S J, LEE J E, LEE C H.Importance of lactic acid bacteria in Asian fermented foods[J].Microbial Cell Factories, 2011, 10(1):S5.
[24] KIM M J, LEE H W, LEE M E, et al.Mixed starter of Lactococcus lactis and Leuconostoc citreum for extending kimchi shelf-life[J].Journal of Microbiology, 2019, 57(6):479-484.
[25] YANG J X, CAO J L, XU H Y, et al.Bacterial diversity and community structure in Chongqing radish paocai brines revealed using PacBio single-molecule real-time sequencing technology[J].Journal of the Science of Food and Agriculture, 2018, 98(9):3 234-3 245.
[1] 刘梦琦, 朱媛媛, 倪慧, 王玉荣, 郭壮. 荆州地区霉豆渣真菌多样性研究[J]. 食品与发酵工业, 2021, 47(6): 241-246.
[2] 李娜, 崔梦君, 马佳佳, 雷炎, 郭壮, 张振东. 基于Illumina MiSeq测序和传统可培养方法的洪湖鲊广椒乳酸菌多样性研究[J]. 食品与发酵工业, 2021, 47(4): 110-115.
[3] 尚雪娇, 方三胜, 朱媛媛, 赵慧君, 郭壮. 霉豆渣细菌多样性解析及基因功能预测[J]. 食品与发酵工业, 2021, 47(3): 36-42.
[4] 王俊奇, 黄卫红, 李双彤, 袁建军, 陈洪彬, 马应伦, 张秋芳. 永春老醋不同生产阶段细菌和真菌多样性动态变化特征分析[J]. 食品与发酵工业, 2021, 47(2): 38-44.
[5] 石佳佳, 齐天翊, 张萌, 陈淋霞, 张笛, 包智华. 自制酵素中乳酸菌群动态分析及对重金属的吸附积累特性[J]. 食品与发酵工业, 2021, 47(1): 14-20.
[6] 吴晓红, 高生平, 蒋彩云, 王清政. 榨菜发酵过程中原核微生物群落结构及其理化因子的动态演替[J]. 食品与发酵工业, 2021, 47(1): 27-34.
[7] 王俊钢, 李宇辉, 刘成江, 郭安民, 岳建平. 新疆哈萨克族传统风干肉中真菌多样性分析[J]. 食品与发酵工业, 2021, 47(1): 35-42.
[8] 刘振东, 毕娜, 李哲, 李梁, 罗章, 薛蓓, 汪雯翰. 西藏不同产区曲拉细菌群落结构的比较分析[J]. 食品与发酵工业, 2020, 46(6): 60-66.
[9] 崔梦君, 张振东, 万舒曼, 葛东颖, 郭壮. 农家豆瓣酱细菌多样性及其对品质影响的评价[J]. 食品与发酵工业, 2020, 46(5): 68-73.
[10] 黄山, 汪楠, 张月, 张甫生, 郑炯. 机械球磨处理对麻竹笋壳膳食纤维理化性质及结构的影响[J]. 食品与发酵工业, 2020, 46(5): 115-120.
[11] 陈可丹, 吴晓江, 陈延儒, 刘婷, 万茵, 刘成梅, 吴酬飞, 付桂明. 顶温对特香型大曲理化指标及菌群演替的影响[J]. 食品与发酵工业, 2020, 46(5): 52-58.
[12] 马江, 文鹏程, 罗俏俏, 曹磊, 朱艳, 杨敏, 张卫兵, 张忠明. 甘南牦牛曲拉中真菌群落结构[J]. 食品与发酵工业, 2020, 46(4): 51-56.
[13] 崔梦君, 王玉荣, 葛东颖, 张振东, 刘欣, 郭壮. 遵义地区莽椒细菌多样性及PICRUSt基因功能预测分析[J]. 食品与发酵工业, 2020, 46(4): 106-112.
[14] 文开勇, 汪月, 文鹏程, 朱艳, 杨敏, 张忠明, 张卫兵. 四川传统腊肉中微生物群落结构研究[J]. 食品与发酵工业, 2020, 46(3): 36-42.
[15] 戈子龙, 张泽金, 周爱梅, 陈松, 钟青萍. 基于高通量测序与培养方法分析新鲜佛手与老香黄中的细菌多样性[J]. 食品与发酵工业, 2020, 46(3): 250-256.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn