Fucoidan modulates gut microbiota alleviating colonic inflammation and renal injury in a mice of chronic kidney disease

LYU Xinchen, ZHANG Yue, WANG Liang, CHEN Yutao, LU Wenwei, WANG Hongchao

Food and Fermentation Industries ›› 2025, Vol. 51 ›› Issue (4) : 104-111.

PDF(12057 KB)
PDF(12057 KB)
Food and Fermentation Industries ›› 2025, Vol. 51 ›› Issue (4) : 104-111. DOI: 10.13995/j.cnki.11-1802/ts.038983

Fucoidan modulates gut microbiota alleviating colonic inflammation and renal injury in a mice of chronic kidney disease

Author information +
History +

Abstract

Fucoidan (FPS), a seaweed-derived polysaccharide, shows renal protective effects.The study conducted a four-week intervention with FPS on adenine-induced chronic kidney disease (CKD) mice, aiming to elucidate the role of fucoidan sulfated polysaccharide in repairing CKD-associated intestinal barrier damage and its impact on the composition and metabolic functions of gut microbiota.Results demonstrated that compared to the model group, FPS significantly reduced serum creatinine and blood urea nitrogen levels in CKD mice, alleviating renal fibrosis.While the improvement in tight junction protein expression in the intestinal epithelium was limited, FPS exhibited a notable reduction in colonic inflammation.Metagenomic sequencing revealed that FPS modulated the composition and metabolic functions of the gut microbiota, significantly enriching beneficial bacteria such as Akkermansia muciniphila and Bacteroides caecimuris, while inhibiting the relative abundance of pathogenic bacteria like Enterorhabdus caecimuris and Staphylococcus lentus.Additionally, FPS significantly enhanced the biosynthetic capabilities of amino acids and vitamins in the intestinal microbiota of CKD mice, particularly pathways related to vascular diseases in CKD.In conclusion, this study elucidates that FPS mitigates colonic inflammation by regulating specific gut microbiota and their metabolic functions, thereby improving renal pathology in CKD mice.This provides new insights for further investigating the mechanisms of action of FPS in the treatment of CKD.

Key words

fucoidan / chronic kidney disease / intestinal barrier / gut microbiota / metagenome

Cite this article

Download Citations
LYU Xinchen, ZHANG Yue, WANG Liang, CHEN Yutao, LU Wenwei, WANG Hongchao. Fucoidan modulates gut microbiota alleviating colonic inflammation and renal injury in a mice of chronic kidney disease[J]. Food and Fermentation Industries, 2025, 51(4): 104-111 https://doi.org/10.13995/j.cnki.11-1802/ts.038983

References

[1] WANG L M, XU X, ZHANG M, et al.Prevalence of chronic kidney disease in China:Results from the sixth China chronic disease and risk factor surveillance[J].JAMA Internal Medicine, 2023, 183(4):298-310.
[2] STEVENS P E, LEVIN A.Evaluation and management of chronic kidney disease:Synopsis of the kidney disease:Improving global outcomes 2012 clinical practice guideline[J].Annals of Internal Medicine, 2013, 158(11):825-830.
[3] KRUKOWSKI H, VALKENBURG S, MADELLA A-M, et al.Gut microbiome studies in CKD:Opportunities, pitfalls and therapeutic potential[J].Nature Reviews.Nephrology, 2023, 19(2):87-101.
[4] WANG X F, YANG S T, LI S H, et al.Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents[J].Gut, 2020, 69(12):2131-2142.
[5] HOLLE J, BARTOLOMAEUS H, LÖBER U, et al.Inflammation in children with CKD linked to gut dysbiosis and metabolite imbalance[J].Journal of the American Society of Nephrology, 2022, 33(12):2259-2275.
[6] ZHAO D, XU J, XU X.Bioactivity of fucoidan extracted from Laminaria japonica using a novel procedure with high yield[J].Food Chemistry, 2018, 245:911-918.
[7] YU H Y, ZHANG Q B, AHMAO FAROOQI A, et al.Opportunities and challenges of fucoidan for tumors therapy[J].Carbohydrate Polymers, 2024, 324:121555.
[8] WIJESINGHE W A J P, ATHUKORALA Y, JEON Y J.Effect of anticoagulative sulfated polysaccharide purified from enzyme-assistant extract of a brown seaweed Ecklonia cava on Wistar rats[J].Carbohydrate Polymers, 2011, 86(2):917-921.
[9] BOLGER A M, LOHSE M, USADEL B.Trimmomatic:A flexible trimmer for Illumina sequence data[J].Bioinformatics, 2014, 30(15):2114-2120.
[10] LI H.Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM[J].arXiv e-prints, 2013, arXiv:1303.3997.
[11] LI H, HANDSAKER B, WYSOKER A, et al.The sequence alignment/map format and SAMtools[J].Bioinformatics, 2009, 25(16):2078-2079.
[12] QUINLAN A R, HALL I M.BEDTools:A flexible suite of utilities for comparing genomic features[J].Bioinformatics, 2010, 26(6):841-842.
[13] BEGHINI F, MCIVER L J, BLANCO-MÍGUEZ A, et al.Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3[J].eLife, 2021, 10:e65088.
[14] SEGATA N, WALDRON L, BALLARINI A, et al.Metagenomic microbial community profiling using unique clade-specific marker genes[J].Nature Methods, 2012, 9(8):811-814.
[15] LIU X X, ZHANG Y H, LI W H, et al.Fucoidan ameliorated dextran sulfate sodium-induced ulcerative colitis by modulating gut microbiota and bile acid metabolism[J].Journal of Agricultural and Food Chemistry, 2022, 70(47):14864-14876.
[16] JIA J H, ZHENG W Y, ZHANG C X, et al.Fucoidan from Scytosiphon lomentaria protects against destruction of intestinal barrier, inflammation and lipid abnormality by modulating the gut microbiota in dietary fibers-deficient mice[J].International Journal of Biological Macromolecules, 2023, 224:556-567.
[17] LI X, XIN S J, ZHENG X Q, et al.Inhibition of the occurrence and development of inflammation-related colorectal cancer by fucoidan extracted from Sargassum fusiforme[J].Journal of Agricultural and Food Chemistry, 2022, 70(30):9463-9476.
[18] NEMET I, LI X S, HAGHIKIA A, et al.Atlas of gut microbe-derived products from aromatic amino acids and risk of cardiovascular morbidity and mortality[J].European Heart Journal, 2023, 44(32):3085-3096.
[19] DENG Z Z, WU N, WANG J, et al.Low molecular weight fucoidan fraction LF2 improves metabolic syndrome via up-regulating PI3K-AKT-mTOR axis and increasing the abundance of Akkermansia muciniphila in the gut microbiota[J].International Journal of Biological Macromolecules, 2021, 193:789-798.
[20] PAONE P, CANI P D.Mucus barrier, mucins and gut microbiota:The expected slimy partners?[J].Gut, 2020, 69(12):2232-2243.
[21] WEISS A S, NIEDERMEIER L S, VON STREMPEL A, et al.Nutritional and host environments determine community ecology and keystone species in a synthetic gut bacterial community[J].Nature Communications, 2023, 14(1):4780.
[22] KIM S, SHIN Y C, KIM T Y, et al.Mucin degrader Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development[J].Gut Microbes, 2021, 13(1):1-20.
[23] WANG J, GUO X Z, ZOU Z Y, et al.Ootheca mantidis mitigates renal fibrosis in mice by the suppression of apoptosis via increasing the gut microbe Akkermansia muciniphila and modulating glutamine metabolism[J].Biomedicine & Pharmacotherapy, 2023, 166:115434.
[24] WEI W C, WONG C C, JIA Z J, et al.Parabacteroides distasonis uses dietary inulin to suppress NASH via its metabolite pentadecanoic acid[J].Nature Microbiology, 2023, 8(8):1534-1548.
[25] LI Z Q, DONG J X, WANG M, et al.Resveratrol ameliorates liver fibrosis induced by nonpathogenic Staphylococcus in BALB/c mice through inhibiting its growth[J].Molecular Medicine, 2022, 28(1):52.
[26] KĘDZIERSKA-KAPUZA K, SZCZUKO U, STOLIŃSKA H, et al.Demand for water-soluble vitamins in a group of patients with CKD versus interventions and supplementation-a systematic review[J].Nutrients, 2023, 15(4):860.
[27] TAIN Y L, HSU C N.The NOS/NO system in renal programming and reprogramming[J].Antioxidants, 2023, 12(8):1629
[28] BAYLIS C.Arginine, arginine analogs and nitric oxide production in chronic kidney disease[J].Nature Clinical Practice.Nephrology, 2006, 2(4):209-220.
[29] POPOLO A, ADESSO S, PINTO A, et al.L-Arginine and its metabolites in kidney and cardiovascular disease[J].Amino Acids, 2014, 46(10):2271-2286.
PDF(12057 KB)

41

Accesses

0

Citation

Detail

Sections
Recommended

/