Effects of exogenous addition of vitamin C on ε-poly-L-lysine fermentation by Streptomyces

  • SUN Hao-ben ,
  • YAN Peng ,
  • LU Peng-qi ,
  • MAO Zhong-gui ,
  • TANG Lei
Expand
  • 1(Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China)
    2(School of Biotechnology, Jiangnan University, Wuxi 214122, China)

Received date: 2018-03-01

  Online published: 2018-10-30

Abstract

ε-Poly-L-lysine (ε-PL) is a short peptide formed by condensation of α-COOH and ε-NH2 of L-lysine. ε-PL has wide application but its fermentation yield by Streptomyces is low. To investigate the effects of exogenous addition of vitamin C on the anti-oxidative damage and ε-poly-L-lysine(ε-PL)by Streptomyces. AF3-44 .The reactive oxygen species (ROS) level and the cell viability of ε-PL producing Streptomyces sp. AF3-44 during shake-flask fermentation were analyzed by fluorescent dye detection. The ε-PL level, the antioxidant enzymes activities, the total antioxidant capacity, the changes of membrane lipid composition and the oxidative damage with and without Vc addition were compared. The parameters during the batch fermentation on a 5 L fermenter scale with and without Vc addition were measured. The intracellular ROS level increased whereas the cell viability decreased with the decrease of pH and increase of ε-PL during shake-flask fermentation. The addition of Vc increase the total antioxidant capacity and the ratio of unsaturated fatty acids, and reduced the oxidative damage. In batch fermentation on a 5 L fermenter scale, the titer of ε-PL was 7.73 g/L at 44 h with Vc addition, which was 1.5 fold of the control. The exogenous addition of antioxidant could increase cell's anti-oxidative ability and reduce oxidative damage, which provided a novel strategy for ε-PL improvement by Streptomyces.

Cite this article

SUN Hao-ben , YAN Peng , LU Peng-qi , MAO Zhong-gui , TANG Lei . Effects of exogenous addition of vitamin C on ε-poly-L-lysine fermentation by Streptomyces[J]. Food and Fermentation Industries, 2018 , 44(9) : 29 -35 . DOI: 10.13995/j.cnki.11-1802/ts.017143

References

[1] SHIMA S, SAKAI H. Poly-L-lysine produced by Streptomyces. Part II. Taxonomy and fermentation studies[J]. Agricultural and Biological Chemistry, 1981, 45(11): 2 497-2 502.
[2] HIRAKI J, ICHIKAWA T, NINOMIYA SI, et al. Use of ADME studies to confirm the safety of ε-polylysine as a preservative in food[J]. Regulatory Toxicology and Pharmacology, 2003, 37(2): 328-340.
[3] HAMANO Y, NICCHU I, SHIMIZU T, et al. ε-poly-l-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase[J]. Applied Microbiology and Biotechnology, 2007, 76(4): 873-882.
[4] LI Shu, LI Feng, CHEN Xu-sheng, et al. Genome shuffling enhanced ε-poly-l-Lysine production by improving glucose tolerance of Streptomyces graminearus[J]. Applied Biochemistry and Biotechnology, 2012, 166(2): 414-423.
[5] 李双, 颜鹏, 曾晨, 等. Genome shuffling筛选ε-聚赖氨酸高产菌及其对代谢流量分配的影响[J]. 微生物学通报, 2016(12): 2 568-2 577.
[6] 吴光耀, 陈旭升, 王靓, 等. 核糖体工程技术选育ε-聚赖氨酸高产菌株[J]. 微生物学通报, 2016(12): 2 744-2 751.
[7] KAHAR P, IWATA T, HIRAKI J, et al. Enhancement of epsilon-polylysine production by Streptomyces albulus strain 410 using pH control[J]. Journal of Bioscience and Bioengineering, 2001, 91(2): 190-194.
[8] REN Xi-dong, CHEN Xu-sheng, ZENG Xin, et al. Acidic pH shock induced overproduction of ε-poly-l-lysine in fed-batch fermentation by Streptomyces sp. M-Z18 from agro-industrial by-products[J]. Bioprocess and Biosystems Engineering, 2015, 38(6): 1 113-1 125.
[9] CHEN Xu-sheng, REN Xi-dong, ZENG Xin, et al. Enhancement of ε-poly-l-lysine production coupled with precursor l-lysine feeding in glucose-glycerol co-fermentation by Streptomyces sp. M-Z18[J]. Bioprocess and Biosystems Engineering, 2013, 36(12): 1 843-1 849.
[10] LIU Sheng-rong, WU Qing-ping, ZHANG Ju-mei, et al. Efficient production of ε-Poly-L-Lysine by Streptomyces ahygroscopicus using one-stage pH control fed-batch fermentation coupled with nutrient feeding[J]. Journal of Microbiology and Biotechnology, 2015, 25(3): 358-365.
[11] ITZHAKI R F. Colorimetric method for estimating polylysine and polyarginine[J]. Analytical Biochemistry, 1972, 50(2): 569-574.
[12] CHEN Xu-sheng, LI Shu, LIAO Li-juan, et al. Production of ε-poly-L-lysine using a novel two-stage pH control strategy by Streptomyces sp. M-Z18 from glycerol[J]. Bioprocess and Biosystems Engineering, 2011, 34(5): 561-567.
[13] 曾昕. 小白链霉菌同步代谢葡萄糖和甘油合成ε-聚赖氨酸的生理机制研究[D]. 无锡: 江南大学, 2016.
[14] 周永鹏. ε-聚赖氨酸产生菌的基因组重排与代谢调控分析[D]. 无锡: 江南大学, 2015.
[15] 颜鹏, 孙浩本, 毛忠贵, 等. 链霉菌ε-聚赖氨酸发酵过程中的氧化胁迫效应[J]. 微生物学通报, 2017(11): 2 547-2 556.
[16] 任喜东. 小白链霉菌响应酸性pH高产ε-聚赖氨酸的生理解析[D]. 无锡: 江南大学, 2015.
[17] 史竞艳, 罗辛茹, 鲍江鸿, 等. 超氧化物歧化酶活性的测定[J]. 湖北大学学报(自然科学版), 2012, 34(4): 373-377.
[18] 许雅娟, 赵艳景, 胡虹. 邻苯三酚自氧化法测定超氧化物歧化酶活性的研究[J]. 西南民族大学学报(自然科学版), 2006, 32(6): 1 207-1 209, 1 212.
[19] 燕国梁. 活性氧胁迫下Bacillus sp. F26以过氧化氢酶合成为特征的应激响应[D]. 无锡: 江南大学, 2006.
[20] HATZINGER P, PALMER P, SMITH R, et al. Applicability of tetrazolium salts for the measurement of respiratory activity and viability of groundwater bacteria[J]. Journal of Microbiological Methods, 2003, 52(PII S0167-7012(02)00132-X1): 47-58.
[21] BELENKY P, YE J, PORTER C, et al. Bactericidal Antibiotics induce toxic metabolic perturbations that lead to cellular damage[J]. Cell Reports, 2015, 13(5): 968-980.
[22] XIAO An-feng, ZHOU Xiang-shan, ZHOU Li, et al. Improvement of cell viability and hirudin production by ascorbic acid in Pichia pastoris fermentation[J]. Applied Microbiology and Biotechnology, 2006, 72(4): 837-844.
[23] POLJSAK B, GAZDAG Z, JENKO-BRINOVEC S, et al. Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach[J]. Journal of Applied Toxicology, 2005, 25(6): 535-548.
[24] LI Xl, CUI Xh, HAN Jr. Sclerotial biomass and carotenoid yield of Penicillium sp. PT95 under oxidative growth conditions and in the presence of antioxidant ascorbic acid[J]. Journal of Applied Microbiology, 2006, 101(3): 725-731.
[25] REN Lu-jing, Sun Xiao-man, LI Xiao-jun, et al. Enhancement of docosahexaenoic acid synthesis by manipulation of antioxidant capacity and prevention of oxidative damage in Schizochytrium sp.[J]. Bioresource Technology, 2017, 223(1): 141-148.
[26] 刘武康, 吴淑燕, 陈国薇, 等. 细菌产生的活性氧及其功能[J]. 微生物学杂志, 2016, 36(1): 89-95.
[27] 马丽娜, 米宏霏, 薛云新, 等. ROS在细菌耐药及抗生素杀菌中的作用机制[J]. 遗传, 2016(10): 902-909.
[28] 姚丹丹, 刘立明, 李江华, 等. 活性氧胁迫促进枯草芽孢杆菌WSHDZ-01过量合成过氧化氢酶[J]. 生物工程学报, 2009, 25(5): 789-792.
[29] BEITES T, PIRES S D, SANTOS C L, et al. Crosstalk between ROS homeostasis and secondary metabolism in S. natalensis ATCC 27448: modulation of pimaricin production by intracellular ROS[J]. Plos One, 2011, 6(11): e27472.
[30] 盛丽, 苏碧泉. 过氧化物酶体中活性氧的生成与清除机理[J]. 辽宁化工, 2003, 32(2): 84-86, 97.
[31] LIU Bin, LIU Jin, SUN Pei-pei, et al. Sesamol enhances cell growth and the biosynthesis and accumulation of docosahexaenoic acid in the microalga Crypthecodinium cohnii[J]. Journal of Agricultural & Food Chemistry, 2015, 63(23):5 640-5 645.
[32] ARUOMA O I. Antioxidant actions of plant foods: use of oxidative DNA damage as a tool for studying antioxidant efficacy[J]. Free Radic Res, 1999, 30(6): 419-427.
[33] 董难, 陈旭升, 任喜东, 等. 发酵过程流加L-谷氨酸提高ε-聚赖氨酸的产量[J].食品与发酵工业, 2013, 39(7):79-82.
[34] XIA Jun, XU Zhao-xian, XU Hong, et al. The regulatory effect of citric acid on the co-production of poly(epsilon-lysine) and poly(L-diaminopropionic acid) in Streptomyces albulus PD-1[J]. Bioprocess and Biosystems Engineering, 2014, 37(10): 2 095-2 103.
[35] GAFFNEY M, O'ROURKE R, MURPHY R. Manipulation of fatty acid and antioxidant profiles of the microalgae Schizochytrium sp. through flaxseed oil supplementation[J]. Algal Research, 2014, 6: 195-200.
[36] BURG A, OSHRAT L O. Salt effect on the antioxidant activity of red microalgal sulfated polysaccharides in soy-bean formula[J]. Marine Drugs, 2015, 13(10): 6 425-6 439.
Outlines

/