Effects of combined fermentation of fungi and lactic acid bacteria on dietary fiber and physicochemical properties of soybean dregs

  • LI Wei-wei ,
  • QU Jun-ya ,
  • ZHOU Cai-qiong
Expand
  • 1(Food Science College, Southwest University, Chongqing 400715, China)
    2(National Demonstration Center for Experimental Food Science and Technology Education,Southwest University, Chongqing 400715,China)
    3(College of Food Science Southwestern University and Chongqing Special Food Engineering Technology Research Center, Chongqing 400715,China)

Received date: 2018-05-03

  Online published: 2018-12-25

Abstract

The effects of fungal and fungi-associated lactic acid bacteria fermentation on the dietary fiber composition, physicochemical properties and total reducing power of soybean dregs were studied. The results showed that fermentation could significantly reduce the contents of protein and fat (p<0.05), and increase the relative content of carbohydrates. Analysis of dietary fiber composition showed that fermentation significantly reduced insoluble dietary fiber(IDF)content and increased soluble dietary fiber(SDF) content (p<0.05), but the content of total dietary fiber remained stable. Particle size and microscopic observations showed that fermentation could reduce the size of dietary fiber, changing its internal structure from original compact network to fluffy and fragile structure, and the particle size was reduced by nearly 50%. Fermentation could improve the hydration properties of soybean dreg dietary fiber, especially the high water solubility index reached 4.01 times of that of the control. The ability to adsorb lipids was increased, and the ability to adsorb cholesterol was 2.01 times higher than that of the control. Fermentation also enhanced the ability of the dietary fiber of bean dregs to absorb nitrite and its total reducing power. Among all the fungus, Aspergillus niger had the best effect on fermented bean dregs. The fermentation of soybean dregs using Aspergillus niger combined with lactic acid bacteria had the best effect among all the combined fermentation methods.

Cite this article

LI Wei-wei , QU Jun-ya , ZHOU Cai-qiong . Effects of combined fermentation of fungi and lactic acid bacteria on dietary fiber and physicochemical properties of soybean dregs[J]. Food and Fermentation Industries, 2018 , 44(11) : 159 -166 . DOI: 10.13995/j.cnki.11-1802/ts.017686

References

[1] ELLEUCH M,BEDIGIAN D,ROISEUX O,et al.Dietary fibre and fibre-rich by-products of food processing:Characterisation,technological functionality and commerecial applications:A review[J],Food Chemistry,2011,124(2):411-421.
[2] KACZMARCZYK M M,MILLER M J,FREUND G G. The health benefits of dietary fiber:beyond the usual suspects of type 2 diabetes mellitus,cardiovascular disease and colon cancer[J]. Metabolism,2012,61(8):1 058-1 066.
[3] ZHONG Xiao,FANG Yu-jing, PAN Zhi-zong, et al. Dietary fiber and fiber fraction intakes and colorectal cancer risk in Chinese adults[J]. Nutrition and Cancer,2014,66(3):351-361.
[4] 裘纪莹,陈蕾蕾,王未名,等.发酵法制备高品质膳食纤维的研究进展[J].中国食物与营养,2010,6(7):24-27.
[5] 毕韬韬,吴广辉,高愿军.豆渣深加工研究进展[J].食品研究与开发,2011,32(6):149-152.
[6] 吴占威,胡志和.大豆豆渣的生理功能及其在食品中的应用[J].食品科学,2012(33):358-362.
[7] 贾丽,黎乃维,金海珠,等.豆腐渣高膳食纤维饼干的研制[J].农产品加工(学刊),2013(2): 43-45.
[8] 赵丽,李倩,朱丹实,等.膳食纤维的研究现状及展望[J].食品与发酵科技,2014,50(5):76-86.
[9] 涂宗财,陈丽莉,王辉,等.发酵与动态高压微射流对豆渣膳食纤维理化特性的影响[J].高压物理学报,2014,28(1):113-119.
[10] 戚勃,李来好.膳食纤维的功能特性及在食品工业中的应用现状[J].现代食品科技,2006,22(3):272-275.
[11] REDGWELL R J,FISCHER M.Dietary fiber as a versatile food component: an industrial perspective[J].Molecular Nutrition & Food Research, 2005,49(6):521-535.
[12] 申瑞玲,王英.膳食纤维的改性及其对功能特性的影响[J].农产品加工(学刊),2009(3):17-20.
[13] 李艳芳,郝建雄,程永强,等.黑曲霉和米曲霉发酵改善豆渣口感[J].农业工程学报,2012,28(7):248-253.
[14] 谢婧.毛霉发酵豆渣过程中主要营养成分变化的研究[J].保鲜与加工,2010,10(1):35-39.
[15] 胡耀辉,徐媛,刘俊梅,等.米曲霉发酵对豆渣成分影响研究[J].大豆科技,2013(4):63.
[16] 谢欢,涂宗财,张露,等.黑曲霉发酵制备高可溶性膳食纤维豆渣工艺优化及其水合性质研究[J].中国粮油学报,2017,32(4):116-121.
[17] 于寒松,徐媛,王玉华,等.响应面法优化混合菌发酵豆渣提高水溶性蛋白含量[J].食品安全质量检测学报,2015,6(4):1 401-1 408.
[18] 陶瑞霄,贾冬英,姚开,等.豆渣毛霉发酵条件的研究[J].中国调味品,2013,38(4):57-60.
[19] 孙进,乐国伟,侯丽霞,等.一株植物乳杆菌内化于小鼠回肠派伊尔结及其免疫调节作用的研究[J].免疫学杂志,2008(1):49-52.
[20] 杨月欣,王光亚,潘兴昌.中国食物成分表2002[M].北京:北京大学医学出版社,2002.
[21] 张洪微,杨铭铎,樊祥富,等.3种改性方法对小麦麸皮膳食纤维结构与性质的影响[J].中国粮油学报,2016,31(12):12-17.
[22] SANGNARK A,NOOMHOM A. Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse[J]. Food Chemistry,2003,80(2):221-229.
[23] 朱丽云,吴俊清,吴丽樱,等.碱提香菇柄膳食纤维的功能性分析[J].中国食品学报,2013,13(4):219-224.
[24] 欧仕益,郑妍,刘子立,等.酵解和酶解麦麸吸附脂肪和胆固醇的研究[J].食品科技,2005(1):91-93.
[25] 陶姝颖,郭晓晖,令博,等.改性葡萄皮渣膳食纤维的理化特性和结构[J].食品科学,2012,33(15):171-177.
[26] 王慧,刘莹,胡博涵,等.豆渣不同菌种发酵后成分变化的研究[J].现代食品科技,2013,29(6):1 277-1 280.
[27] 管瑛,汪瑨芃,李文,等.豆渣固态发酵过程中主要营养成分及抗氧化特性变化[J].食品科学,2016,37(21):189-194.
[28] 王佳,张颜笑,郑炯.酶解处理对竹笋膳食纤维理化特性的影响[J].食品与发酵工业,2016,42(9):104-108.
[29] 涂宗财,陈媛,刘成梅,等.动态超高压微射流均质对半纤维素B理化性质的影响[J].食品工业科技,2009,30(3):74-75.
[30] 郑刚,何李,赵国华.高压蒸煮对苹果膳食纤维理化特性及发酵性能的影响[J].食品与发酵工业,2009,35(5):90-93.
[31] LEE I H,HUNG Y H,CHOU C C.Soild-state fermentation with fungi to enhance the antioxidative activity,total phenolic and anthoccyanin contents of black bean[J].International Journal of Food Microbiology,2008,121(2):150-156.
[32] AJIBOLA C F,FASHAKIN J B,FAGBEMI T N,et al.Effect of peptide size on antioxidant propeties of African yam bean seed(Sphenostylis stenocarpa)protein hydrolysate fractions[J]. International Journal of Food Microbiology,2011,12(10):6 685-6 702.
[33] YANG J H,MAU J L,KO P T,et al.Antioxdant properties of femented soybean borth[J].Food Chemistry,2000,71(2):249-254.
[34] 王秀丽,李海云,李子院.桂圆壳水不溶性膳食纤维吸附NO-2、胆酸钠的研究[J].食品研究与开发,2007.28(10):48-51.
Outlines

/