High-throughput sequencing revealed fungal community structures at
high temperature Daqu and medium temperature Daqu

  • LI Jing-xin ,
  • WANG Yan-li ,
  • HE Hong-kui ,
  • LIU Guo-ying ,
  • LI Xiao-huan ,

  • CHEN Bin
    ,
  • WU Cui-fang ,
  • WANG Lu
Expand
  • (Anhui Gujing Gongjiu Co. Ltd., Bozhou 236820, China)

Received date: 2018-06-15

  Online published: 2019-01-22

Abstract

The high-throughput sequencing was used to compare the difference of fungal community structures between high temperature Daqu and medium temperature Daqu in Baijiu brewing. The results showed that the moulds were the main fungus of high temperature Daqu, Thermomyces lanuginosus and Wallemia sp. were unique species in high temperature Daqu, which accounted for 80.49% and 4.25%, respectively. In medium temperature Daqu, the moulds accounts for 1/4 of fungi and the yeast were the main fungi. Issatchenkia orientalis, Saccharomycopsis fibuligera, Aspergillus oryzae, Candida tropicalis, Trichosporon asahii, Wickerhamomyces anomalus and Rhizomucor pusillus were unique species in medium temperature Daqu, which accounted for 38.22%, 25.66%, 21.40%, 3.82%, 2.75%, 1.5%, and 1.29%, respectively. Besides, Aspergillus intermedius accounted for 10.95% in high temperature Daqu and 3.45% in medium temperature Daqu, respectively. This results revealed the difference of fungal community structures between high temperature Daqu and medium temperature Daqu and provided a reference for the application of Daqu in the brewing process.

Cite this article

LI Jing-xin , WANG Yan-li , HE Hong-kui , LIU Guo-ying , LI Xiao-huan ,
CHEN Bin
, WU Cui-fang , WANG Lu . High-throughput sequencing revealed fungal community structures at
high temperature Daqu and medium temperature Daqu[J]. Food and Fermentation Industries, 2018
, 44(12) : 52 -59 . DOI: 10.13995/j.cnki.11-1802/ts.018043

References

[1] 邓杰,黄治国,卫春会,等.基于高通量测序的浓香型白酒窖池细菌群落结构分析[J]. 现代食品科技, 2015(7):50-55.
[2] 罗惠波,侯海波,黄治国,等. 大曲真核微生物群落PCR-DGGE电泳条件优化[J]. 四川理工学院学报(自科版), 2011, 24(5):515-518.
[3] 罗惠波,杨晓东,杨跃寰,等. 浓香型大曲中可培养真菌的分离鉴定与系统发育学分析[J]. 现代食品科技, 2013(9):2 047-2 052.
[4] 刘婷婷,张明春,曾驰,等. 白云边酒大曲及小麦原料中主要微生物的分析[J]. 中国酿造, 2010, 29(11):32-35.
[5] 赵东,郑佳,彭志云,等. 高通量测序技术解析五粮液窖泥原核微生物群落结构[J]. 食品与发酵工业, 2017, 43(9):1-8.
[6] WANG H Y, GAO Y B, FAN Q W, et al. Characterization and comparison of microbial community of different typical Chinese liquor Daqus by PCR-DGGE.[J]. Letters in Applied Microbiology, 2011, 53(2):134-140.
[7] 乔晓梅,赵景龙,杜小威,等. 高通量测序法对清香大曲真菌群落结构的分析[J]. 酿酒科技, 2015,250(4):28-31.
[8] 胡佳音,周森,赵卫鹏,等. 清、浓、酱三种大曲真菌多样性初步分析[J]. 酿酒科技, 2016,266(8):87-90.
[9] SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mother: Open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied & Environmental Microbiology, 2009, 75(23):7 537-7541.
[10] KEMP P F, ALLER J Y. Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us[J]. Fems Microbiology Ecology, 2004, 47(2):161-177.
[11] ZHANG C H, LI S F, YANG L, et al. Structural modulation of gut microbiota in life-long calorie-restricted mice[J]. Nature Communications, 2013, 4(1):2 163-2 173.
[12] SEGATA N, IZARD J, WALDRON L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 2011, 12(6):R60-R78.
[13] 蔡杰华,刘斌,石冬梅,等. 四种嗜热真菌的分离与鉴定[J]. 现代生物医学进展, 2012, 12(6):1 059-1 064.
[14] 董瑞丽,罗惠波,叶光斌. 浓香型大曲中的嗜热真菌[J]. 中国酿造, 2011, 30(4):75-77.
[15] SINGH S, MSDLALA A M, PRIOR B A. Thermomyces lanuginosus: Properties of strains and their hemicellulases[J]. Fems Microbiology Reviews, 2003, 27(1):3-16.
[16] SINGH S, DU-PREEZ J C, PILLAY B, et al. The production of hemicellulases by Thermomyces lanuginosus strain SSBP: Influence of agitation and dissolved oxygen tension[J]. Applied Microbiology and Biotechnology, 2000, 54(5): 698-704.
[17] 王瑞杰, NOKUTHULA P M,牛丹丹,等. 疏绵状嗜热丝孢菌外切β-葡聚糖酶的基因克隆与酶学特征[J]. 微生物学通报, 2016, 43(2):285-291.
[18] 郭润芳,李多川,王荣. 疏绵状嗜热丝孢菌热稳定几丁质酶的纯化及其性质研究[J]. 微生物学报, 2005, 45(2):270-274.
[19] 夏玙,罗惠波,周平,等.不同处理方式的大曲真菌群落差异分析[J].食品科学,2018,39(22):166-172.
[20] EAJC J, GUNDECIMERMAN N. The genus Wallemia—from contamination of food to health threat[J]. Microorganisms, 2018; 6(2):46-56.
[21] 郭永霞,赵爽,刘庆洪,等. Wallemia sebi的RNase活性和抗植物病原真菌活性的初步研究[J]. 微生物学通报, 2006, 33(2):30-33.
[22] LI X R, MA E B, YAN L Z, et al. Bacterial and fungal diversity in the traditional Chinese liquor fermentation process[J]. International Journal of Food Microbiology, 2011, 146(1):31-37.
[23] 刘婷婷,曾驰,杨团元,等. 白云边酒优势酵母菌的分离鉴定及其发酵特征分析[J]. 中国酿造, 2013, 32(12):116-120.
[24] 刘婷婷. 白云边酒酿造微生物分析及东方伊萨酵母发酵特性研究[D]. 武汉:武汉工业学院, 2011.
[25] CLAVIJO A, CALDERON I L, PANEQUE P. Diversity of Saccharomyces and non-Saccharomyces yeasts in three red grape varieties cultured in the Serranía de Ronda, (Spain) vine-growing region[J]. International Journal of Food Microbiology, 2010, 143(3):241-245.
[26] LI S S, CHENG C, LI Z, et al. Yeast species associated with wine grapes in China[J]. International Journal of Food Microbiology, 2010, 138(1):85-90.
[27] GALLARDO J C M, SOUZA C S, CICARELLI R M B, et al. Enrichment of a continuous culture of Saccharomyces cerevisiae, with the yeast Issatchenkia orientalis, in the production of ethanol at increasing temperatures[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(3):405-414.
[28] 郭玉婉. 酵母α-淀粉酶基因克隆、表达及其应用于麦芽三糖的制备[D]. 无锡:江南大学, 2013.
[29] 陈蕾. 扣囊复膜酵母A11菌株淀粉酶的生产和酒精发酵的研究[D]. 青岛:中国海洋大学, 2010.
[30] 于欣君. 扣囊复膜酵母菌酸性蛋白酶基因在解脂耶罗维亚酵母菌中表达和重组酸性蛋白酶的应用[D]. 青岛:中国海洋大学, 2011.
[31] 苏畅,马莹莹,杨建刚. 扣囊复膜酵母在酿酒中的应用研究进展[J]. 食品研究与开发, 2018(1):205-209.
[32] 马凯,崔哲男,郑晓卫,等. 汾酒大曲可培养真菌多样性的初步分析[J].中国酿造,2011,233(8):19-21.
[33] 明红梅,郭志,周健,等.浓香型大曲中产香微生物的筛选及鉴定[J].现代食品科技,2015,31(4):186-191.
[34] 吴徐建. 酱香型白酒固态发酵过程中酵母与细菌群落结构变化规律的研究[D].无锡:江南大学,2013.
[35] 应玲云,伍时华,赵东玲,等. 烧酒曲中扣囊复膜酵母的分离及鉴定[J].食品与发酵工业,2013,39(1):146-150.
[36] 臧威,谢广发,孙剑秋,等. 绍兴黄酒酒药中酵母菌的物种资源[J].菌物学报,2015,34(6):1 078-1 084.
[37] 罗小叶,邱树毅,陆安谋,等. 酱香大曲产香酵母的分离及鉴定[J].食品与发酵工业,2016,42(12):26-31.
[38] 王晓丹,陈美竹,班世栋,等. 茅台大曲中酵母的分离、鉴定及其功能初探[J]. 食品科学, 2017, 38(4):51-57.
[39] 王鹏昊,关统伟,张习超,等. 小曲中优质产酯酵母分离鉴定及其产酯条件优化[J]. 食品与发酵工业, 2018,44(2):62-67.
[40] 侯建光,郭富祥,樊建辉,等. 响应面法优化陶香型窖池中异常威克汉姆酵母发酵产乙酸乙酯条件[J]. 酿酒科技, 2016,268(10):77-81.
[41] 王玉霞. 阿氏丝孢酵母(Trichosporon asahii)β-葡萄糖苷酶及葡萄糖苷类风味物质水解机制的研究[D]. 无锡:江南大学, 2012.
[42] 李幼筠,周逦. 科学利用微生物推动中国酱油工艺大变革[J]. 中国酿造, 2011, 30(1):1-5.
[43] 包启安. 酱油科学与酿造技术[M]. 北京:中国轻工业出版社, 2011.
[44] TAYLOR M J, RICHARDSON T. Applications of microbial enzymes in food systems and in biotechnology [J]. Advances in Applied Microbiology, 1979, 25:7-35.
[45] ABE K, GOMI K, HASEGAWA F, et al. Impact of Aspergillus oryzae, genomics on industrial production of metabolites[J]. Mycopathologia, 2006, 162(3):143-155.
[46] MACHIDA M, YAMADA O, GOMI K. Genomics of Aspergillus oryzae: Learning from the history of Koji mold and exploration of its future[J]. Dna Research, 2008, 15(4):173-183.
[47] 赵中开,龙可,马莹莹,等. 米曲霉菌在酿酒工业中的研究进展[J]. 现代食品科技, 2013,29(4):932-935.
[48] 王璐,曹钰,陆健,等. 绍兴黄酒麦曲中α-淀粉酶的初步研究[J]. 中国酿造, 2007, 26(5):38-40.
[49] 刘晓蓉,连晓蔚,朱美娟. 米曲霉1228产α-淀粉酶特性的研究[J]. 中国调味品, 2009, 34(4):36-38.
[50] 刘志伟,谭兴和,周红丽,等. 米曲霉产中性蛋白酶条件的优化[J]. 中国酿造, 2011, 30(11):103-107.
[51] 邓静,徐静,吴华昌,等. 米曲霉高产酸性蛋白酶菌株的选育[J]. 中国调味品, 2010, 35(1):53-55.
[52] 王小花,洪枫,朱利民,等. 米曲霉产胞外脂肪酶培养条件的优化[J]. 食品与发酵工业, 2005, 31(4):25-28.
[53] 黄晓东,叶生梅,高新义,等. 米曲霉固态发酵豆渣及其提取物抗氧化性的研究[J]. 食品科技, 2005,82(5):80-82.
[54] 汤鸣强,卞矛,李琼华. 米曲霉固体发酵生产果胶酶的研究[J]. 福建师大福清分校学报, 2006(2):31-35.
[55] 何正贵. Rhizomucor pusillus耐热淀粉酶基因的克隆及其在毕赤酵母中的表达[D]. 上海:华东理工大学, 2013.
[56] 敖宗华,陕小虎,沈才洪,等. 国内主要大曲相关标准及研究进展[J]. 酿酒科技, 2010,188(2):104-108.
[57] 张春林. 泸州老窖大曲的质量、微生物与香气成分关系[D]. 无锡:江南大学, 2012.
[58] 邢钢,敖宗华,王松涛,等. 不同温度大曲制曲过程理化指标变化分析研究[J]. 酿酒科技, 2014,240(6):20-23.
[59] 邢爽,魏志阳,郭学武,等.不同香型大曲酯化酶的特性分析[J]. 现代食品科技,2018(05): 1-5.[2018-06-06]. http://kns.cnki.net/kcms/detail/44.1620.TS.20180411.1243.050.html.
[60] 徐占成,徐姿静,刘孟华,等. 高通量测序法对剑南春大曲真菌群落结构的分析[J]. 酿酒科技, 2018,286(4): 22-25;32.
[61] 李申奥. 兼香型白酒高温大曲微生物群落演替规律的研究[D]. 武汉:华中农业大学, 2016.
Outlines

/