[1] MA S, Li B, ZHU L, et al. Obstacle analysis and countermeasures in development of rural biogas[J]. China Biogas, 2010, 28(4): 49-55.
[2] RUANE J, SONNINO A, AGOSTINI A. Bioenergy and the Potential Contribution of Agricultural Biotechnologies in Developing Countries[J]. Biomass and Bioenergy, 2010, 34(10): 1 427-1 439.
[3] BOUALLAGUI H, LAHDHEB H, ROMDAN E B, et al. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition[J]. Journal of Environmental Management, 2009, 90(5): 1 844-1 849.
[4] CUIPING L, CHUANGZHI W, HAITAO H. Study on the distribution and quantity of biomass residues resource in China[J]. Biomass and Bioenergy, 2004, 27(2): 111-117.
[5] WEILAND P. Biogas production: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2010, 85(4): 849-860.
[6] DINUCCIO E, BALSARI P, GIOELLI F, et al. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses[J]. Bioresource Technology, 2010, 101(10): 3 780-3 783.
[7] 孙世荣,郭秭,岳金权.我国稻草资源化利用现状及其评价[J].农业与技术,2015,35(17):20-23.
[8] LIU H, JIANG G, ZHUANG H, et al. Distribution, utilization structure and potential of biomass resources in rural China: with special references of crop residues[J]. Renewable and Sustainable Energy Reviews, 2008, 12(5): 1 402-1 418.
[9] 国家统计局.中国统计摘要[R].北京:中国统计出版社,2006.
[10] GROVER P, Mishra S. Biomass Briquetting: Technology and Practices[M]. Food and Agriculture Organization of the United Nations, 1996.
[11] 熊承永,李健,黄利宏.户用沼气池秸秆利用浅析[J].可再生能源,2003(3):44-45.
[12] WERTHER J, SAENGER M, HARTGE E, et al. Combustion of agricultural residues[J]. Progress in Energy and Combustion Science, 2000, 26(1): 1-27.
[13] 林斌.集约化养猪场粪污处理工艺设计探讨田[J].福建农业学报,2006,21(4):420-424.
[14] 张翠丽,李轶冰,卜东升.牲畜粪便与麦秆混合厌氧发酵的产气量发酵时间及最优温度[J].应用生态学报,2008,19(8):1 818-1 822.
[15] 林代炎,叶美锋,吴飞龙,等.规模化养猪场粪污循环利用技术集成与模式构建研究[J].农业环境科学学报,2010,29(2):386-391.
[16] 陈小华,朱洪光.农作物秸秆产沼气研究进展与展望[J].农业工程学报,2007(3):279-283.
[17] 严勃,傅舒.混合发酵产沼气原料的研究概况[J].环境卫生工程,2015(5):22-25.
[18] MICHAL G, SLAWOMIR J, IZABELA P G, et al. Enhancing biogas plant production using pig manure and corn silage by adding wheat straw processed with liquid hot water and steam explosion[J]. Biotechnology for Biofuels,2017,10(1):259-271.
[19] 李轶冰,张翠丽,杨改河,等.温度对粪便与玉米秸秆混合厌氧消化产生特性的影响[J].西北农林科技大学学报:自然科学版,2009,37(1):66-71.
[20] MARCIN Z, MARCIN D, MARTA K, et al. Comparison of ultrasonic and hydrothermal cavitation pretreatments of cattle manure mixed with straw wheat on fermentative biogas production[J]. Waste Biomass Valor, 2017,27(7):1-8.
[21] LUO Lina, GONG Weijia, QIN Liyuan, et al. Influence of liquid- and solid-state coupling anaerobic digestion process on methane production of cow manure and rice straw[J]. Journal of Material Cycles and Waste Management, 2018,20(3):1 804-1 812.
[22] 周莎,王晓娇,张彤,等.鸡粪与麦秆混合厌氧发酵环境中各因子响应关系研究[J].环境科学学报,2016,36(3):932-939.
[23] 刘永.牛粪与水稻秸秆混合厌氧发酵产沼气工艺优化研究[D].延吉:延边大学,2014.
[24] FENG Jiayu, LI Yeqing, ZHANG Enlan, et al. Solid-state Co-digestion of NaOH-pretreated corn straw and chicken manure under mesophilic condition[J]. Waste and Biomass Valorization , 2018,9(6):1 027-1 035.
[25] 习彦花,程辉彩,张丽萍,等.产氢产乙酸菌GK-1的分离鉴定及产酸特性[J].微生物学通报,2011,38(2):181-186.
[26] 李杰,郁继华,冯致,等.不同微生物菌剂对牛粪好氧堆肥的影响[J].干旱区资源与环境,2014,28 (2):109-113.
[27] 时小可,颉建明,冯致,等.三种微生物菌剂对羊粪高温好氧堆肥的影响[J].中国农学通报,2015,31(2):45-48.
[28] 王道泽,谢国雄,李丹,等.不同微生物菌剂在鸡粪堆肥中的应用效果[J].浙江农业学报,2013,25(5):1 074-1 078.
[29] 师晓爽,刘德立,郎志宏,等.PCR-DGGE技术在农村户用沼气发酵微生物研究中的初步应用[J].山东师范大学学报(自然科学版),2007,22(2):120-122.
[30] 崔宗均,宫小燕,李国学.变性梯度凝胶电泳在堆肥微生物研究中的应用[J].微生物学通报,2004,31(5):116-119.
[31] 秦楠,栗东芳,杨瑞馥.高通量测序技术及其在微生物学研究中的应用[J].微生物学报,2011,51(4):445-457.
[32] 李庆岗,陶立.高通量测序技术及其在生命科学中的应用[J].畜牧与饲料科学,2012,33(2):25-28.
[33] GANS J, WOLINSKY M, DUNBAR J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil[J]. Science, 2005, 309(5 739): 1 387-1 390.
[34] 王亮.牛粪好氧堆肥中微生物多样性及生产应用研究[D].北京:北京林业大学,2012.
[35] 刘驰,李家宝,芮俊鹏,等.16S rRNA 基因在微生物生态学中的应用:现状和问题[J].生态学报,2015,35(9):1-25.
[36] SONG Zilin, ZHANG Chao. Anaerobic codigestion of pretreated wheat straw with cattle manure and analysis of the microbial community[J]. Bioresource Technology,2015,186:128-135.
[37] 滑留帅,王璟,徐照学,等. 16S rRNA 基因高通量测序分析牛粪发酵细菌多样性[J].农业工程学报,2016,32(s2):311-315.
[38] 王旭辉,徐鑫,王卉,等.耐盐纤维素降解菌的筛选、鉴定及其配比优化的研究[J].新疆农业科学,2017,54(12): 2 282-2 292.
[39] 朱懿德.工业发酵分析[M].北京:中国轻工业出版社,1997.
[40] 王玉万.木质纤维素固体基质发酵物中半纤维素、纤维素和木质素的定量分析程序[J].微生物学通报,1987,14(2):81-84.
[41] 杨淑蕙.植物纤维化学[M].北京:中国轻工业出版社,2001.
[42] CAPORASO J.G., KUCZYNSKI J., STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature methods, 2010,7(5),335-336.
[43] EDGAR R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2 460-2 461.
[44] WANG Yu, SHENG Huafang, HE Yan, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags[J]. Applied and Environmental Microbiology, 2012, 78(23): 8 264-8 271.
[45] GRICE E A, KONG H H, CONLAN S, et al. Topographical and temporal diversity of the human skin microbiome[J]. Science, 2009,324(5 931):1 190-1 192.
[46] LOZUPONE C, KNIGHT R. UniFrac: a new phylogenetic method for comparing microbial communities[J]. Applied and Environmental Microbiology, 2005,71(12):8 228-8 235.
[47] JIANG Xiaotao, PENG Xin, DENG Guanhua, et al. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland[J]. Microbial Ecology,2013, 66(1): 96.