High-throughput sequencing analysis of microbial diversity in the combinedfermentation stages of cow dung and corn straw

  • WANG Xuhui ,
  • XU Xin ,
  • BAO Zhe ,
  • WANG Hui ,
  • YE Kai ,
  • LI Guan ,
  • DENG Yu
Expand
  • 1 (College of Life Sciences and Technology, Xinjiang University, Urumqi 830046, China)
    2 (Organisms Energy Research Institute, Xinjiang Academy of Agriculture Science, Urumqi 830091, China)
    3 (Institute of Food Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)
    4 (Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China)
    5 (Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China)

Received date: 2017-12-26

  Online published: 2019-03-11

Abstract

Effects of different proportions of microbial agents on the fermentation of cow dung-corn straw combined with biogas fermentation were compared, the high-throughput sequencing technology was used to analyze the microbial diversity in the biogas fermentation broth with the best bacteria. The results showed that the optimal condition to ferment corn straw and cow dung was as follows: microbial agents were Bacillus cereus, Pseudomonas formosensis, Bacillus subtilis, Pseudomonas songnenensis (mass ratio 3∶2∶3∶2). Under these conditions, the highest biogas and methane yield reached 72 mL/g VS and 39 mL/g VS while the highest cumulative biogas and methane yield reached 778 mL/g VS and 532 mL/g VS, respectively. The high-throughput sequencing results showed that Bacteroidetes were the most abundant bacteria and was the most important group of the dominant bacterial species. The relative abundance trend in the biogas fermentation process increased from 33.8% during the early stage of fermentation to 43.6% at the end stage of fermentation. Ascomycota was the most abundant among the fungi. The main dominant group in the biogas fermentation process first increased and then decreased, went from 65.7% during the initial fermentation stages to 84.7% in the middle of the fermentation process and dropped to 66.8% at the end of the fermentation process. The research on combined fermentation of cow dung and corn straw provides a theoretical basis for preparing a biogas agent.

Cite this article

WANG Xuhui , XU Xin , BAO Zhe , WANG Hui , YE Kai , LI Guan , DENG Yu . High-throughput sequencing analysis of microbial diversity in the combinedfermentation stages of cow dung and corn straw[J]. Food and Fermentation Industries, 2019 , 45(3) : 47 -55 . DOI: 10.13995/j.cnki.11-1802/ts.018491

References

[1] MA S, Li B, ZHU L, et al. Obstacle analysis and countermeasures in development of rural biogas[J]. China Biogas, 2010, 28(4): 49-55.
[2] RUANE J, SONNINO A, AGOSTINI A. Bioenergy and the Potential Contribution of Agricultural Biotechnologies in Developing Countries[J]. Biomass and Bioenergy, 2010, 34(10): 1 427-1 439.
[3] BOUALLAGUI H, LAHDHEB H, ROMDAN E B, et al. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition[J]. Journal of Environmental Management, 2009, 90(5): 1 844-1 849.
[4] CUIPING L, CHUANGZHI W, HAITAO H. Study on the distribution and quantity of biomass residues resource in China[J]. Biomass and Bioenergy, 2004, 27(2): 111-117.
[5] WEILAND P. Biogas production: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2010, 85(4): 849-860.
[6] DINUCCIO E, BALSARI P, GIOELLI F, et al. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses[J]. Bioresource Technology, 2010, 101(10): 3 780-3 783.
[7] 孙世荣,郭秭,岳金权.我国稻草资源化利用现状及其评价[J].农业与技术,2015,35(17):20-23.
[8] LIU H, JIANG G, ZHUANG H, et al. Distribution, utilization structure and potential of biomass resources in rural China: with special references of crop residues[J]. Renewable and Sustainable Energy Reviews, 2008, 12(5): 1 402-1 418.
[9] 国家统计局.中国统计摘要[R].北京:中国统计出版社,2006.
[10] GROVER P, Mishra S. Biomass Briquetting: Technology and Practices[M]. Food and Agriculture Organization of the United Nations, 1996.
[11] 熊承永,李健,黄利宏.户用沼气池秸秆利用浅析[J].可再生能源,2003(3):44-45.
[12] WERTHER J, SAENGER M, HARTGE E, et al. Combustion of agricultural residues[J]. Progress in Energy and Combustion Science, 2000, 26(1): 1-27.
[13] 林斌.集约化养猪场粪污处理工艺设计探讨田[J].福建农业学报,2006,21(4):420-424.
[14] 张翠丽,李轶冰,卜东升.牲畜粪便与麦秆混合厌氧发酵的产气量发酵时间及最优温度[J].应用生态学报,2008,19(8):1 818-1 822.
[15] 林代炎,叶美锋,吴飞龙,等.规模化养猪场粪污循环利用技术集成与模式构建研究[J].农业环境科学学报,2010,29(2):386-391.
[16] 陈小华,朱洪光.农作物秸秆产沼气研究进展与展望[J].农业工程学报,2007(3):279-283.
[17] 严勃,傅舒.混合发酵产沼气原料的研究概况[J].环境卫生工程,2015(5):22-25.
[18] MICHAL G, SLAWOMIR J, IZABELA P G, et al. Enhancing biogas plant production using pig manure and corn silage by adding wheat straw processed with liquid hot water and steam explosion[J]. Biotechnology for Biofuels,2017,10(1):259-271.
[19] 李轶冰,张翠丽,杨改河,等.温度对粪便与玉米秸秆混合厌氧消化产生特性的影响[J].西北农林科技大学学报:自然科学版,2009,37(1):66-71.
[20] MARCIN Z, MARCIN D, MARTA K, et al. Comparison of ultrasonic and hydrothermal cavitation pretreatments of cattle manure mixed with straw wheat on fermentative biogas production[J]. Waste Biomass Valor, 2017,27(7):1-8.
[21] LUO Lina, GONG Weijia, QIN Liyuan, et al. Influence of liquid- and solid-state coupling anaerobic digestion process on methane production of cow manure and rice straw[J]. Journal of Material Cycles and Waste Management, 2018,20(3):1 804-1 812.
[22] 周莎,王晓娇,张彤,等.鸡粪与麦秆混合厌氧发酵环境中各因子响应关系研究[J].环境科学学报,2016,36(3):932-939.
[23] 刘永.牛粪与水稻秸秆混合厌氧发酵产沼气工艺优化研究[D].延吉:延边大学,2014.
[24] FENG Jiayu, LI Yeqing, ZHANG Enlan, et al. Solid-state Co-digestion of NaOH-pretreated corn straw and chicken manure under mesophilic condition[J]. Waste and Biomass Valorization , 2018,9(6):1 027-1 035.
[25] 习彦花,程辉彩,张丽萍,等.产氢产乙酸菌GK-1的分离鉴定及产酸特性[J].微生物学通报,2011,38(2):181-186.
[26] 李杰,郁继华,冯致,等.不同微生物菌剂对牛粪好氧堆肥的影响[J].干旱区资源与环境,2014,28 (2):109-113.
[27] 时小可,颉建明,冯致,等.三种微生物菌剂对羊粪高温好氧堆肥的影响[J].中国农学通报,2015,31(2):45-48.
[28] 王道泽,谢国雄,李丹,等.不同微生物菌剂在鸡粪堆肥中的应用效果[J].浙江农业学报,2013,25(5):1 074-1 078.
[29] 师晓爽,刘德立,郎志宏,等.PCR-DGGE技术在农村户用沼气发酵微生物研究中的初步应用[J].山东师范大学学报(自然科学版),2007,22(2):120-122.
[30] 崔宗均,宫小燕,李国学.变性梯度凝胶电泳在堆肥微生物研究中的应用[J].微生物学通报,2004,31(5):116-119.
[31] 秦楠,栗东芳,杨瑞馥.高通量测序技术及其在微生物学研究中的应用[J].微生物学报,2011,51(4):445-457.
[32] 李庆岗,陶立.高通量测序技术及其在生命科学中的应用[J].畜牧与饲料科学,2012,33(2):25-28.
[33] GANS J, WOLINSKY M, DUNBAR J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil[J]. Science, 2005, 309(5 739): 1 387-1 390.
[34] 王亮.牛粪好氧堆肥中微生物多样性及生产应用研究[D].北京:北京林业大学,2012.
[35] 刘驰,李家宝,芮俊鹏,等.16S rRNA 基因在微生物生态学中的应用:现状和问题[J].生态学报,2015,35(9):1-25.
[36] SONG Zilin, ZHANG Chao. Anaerobic codigestion of pretreated wheat straw with cattle manure and analysis of the microbial community[J]. Bioresource Technology,2015,186:128-135.
[37] 滑留帅,王璟,徐照学,等. 16S rRNA 基因高通量测序分析牛粪发酵细菌多样性[J].农业工程学报,2016,32(s2):311-315.
[38] 王旭辉,徐鑫,王卉,等.耐盐纤维素降解菌的筛选、鉴定及其配比优化的研究[J].新疆农业科学,2017,54(12): 2 282-2 292.
[39] 朱懿德.工业发酵分析[M].北京:中国轻工业出版社,1997.
[40] 王玉万.木质纤维素固体基质发酵物中半纤维素、纤维素和木质素的定量分析程序[J].微生物学通报,1987,14(2):81-84.
[41] 杨淑蕙.植物纤维化学[M].北京:中国轻工业出版社,2001.
[42] CAPORASO J.G., KUCZYNSKI J., STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature methods, 2010,7(5),335-336.
[43] EDGAR R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2 460-2 461.
[44] WANG Yu, SHENG Huafang, HE Yan, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags[J]. Applied and Environmental Microbiology, 2012, 78(23): 8 264-8 271.
[45] GRICE E A, KONG H H, CONLAN S, et al. Topographical and temporal diversity of the human skin microbiome[J]. Science, 2009,324(5 931):1 190-1 192.
[46] LOZUPONE C, KNIGHT R. UniFrac: a new phylogenetic method for comparing microbial communities[J]. Applied and Environmental Microbiology, 2005,71(12):8 228-8 235.
[47] JIANG Xiaotao, PENG Xin, DENG Guanhua, et al. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland[J]. Microbial Ecology,2013, 66(1): 96.
Outlines

/