Effects of glycation time and temperature on forming glycation products, such as fructosamine, carbonyl, 5-hydroxymethylfurfural, acrylamide etc. were investigated using bovine serum albumin (BSA) and glucose for glycation reaction. The results showed that the contents of both fructosamine and carbonyl in the BSA-glucose system firstly increased and then decreased with increasing reaction time and temperature. The browning degree increased with increasing temperature, but it increased first and then decreased with the reaction time. When the temperature was higher than 60 ℃ and the reaction time was more than 12 h, the contents of potentially harmful products such as 5-hydroxymethylfurfural, acrylamide, advanced glycation end-products increased significantly (P<0.05). These results could provide technological references for alleviating the formation of harmful glycation products in high protein and high sugar foods during heating processing by controlling the processing time and temperature.
LI Jun
,
TU Zongcai
,
SHA Xiaomei
,
ZHANG Lu
,
YE Yunhua
,
LUO Juan
,
YANG Ping
,
SHAO Yanhong
. Effects of reaction conditions on the formation of glycosylation products of bovine serum albumin-glucose system[J]. Food and Fermentation Industries, 2019
, 45(5)
: 87
-93
.
DOI: 10.13995/j.cnki.11-1802/ts.018112
[1] JUNG W K, PARK P J, AHN C B, et al. Preparation and antioxidant potential of maillard reaction products from (MRPs) chitooligomer[J]. Food Chemistry, 2014, 145: 173-178.
[2] 龚平,阚建全.美拉德反应产物性质的研究进度[J]. 食品与发酵工业, 2009,35(4): 141-146.
[3] 黄小琴. 基于质谱技术的蛋白质组学方法对食品蛋白质糖基化的研究[D]. 南昌:南昌大学, 2013: 1-3.
[4] DAGLIA M, AMOROSO A, ROSSI D, et al. Identification and quantification of Α-dicarbonyl compounds in balsamic and traditional balsamic vinegars and their cytotoxicity against human cells[J]. Journal of Food Composition & Analysis, 2013, 31(1): 67-74.
[5] SACHSE B, MEINL W, SOMMER Y, et al. Bioactivation of food genotoxicants 5-hydroxymethylfurfural and furfuryl alcohol by sulfotransferases from human, mouse and rat: A comparative study[J]. Archives of Toxicology, 2016, 90(1): 137-148.
[6] 张娟,杨媛媛,王文娟,等. 丙烯酰胺对雄性小鼠生殖毒性的研究[J]. 毒理学杂志, 2011(2): 90-92.
[7] 孙缅恩,杜冠华. 晚期糖基化终产物的病理意义及其机制[J]. 中国药理学通报, 2002(3): 246-249.
[8] LIU Y, ZHAO G, ZHAO M, et al. Improvement of functional properties of peanut protein isolate by conjugation with dextran through maillard reaction[J]. Food Chemistry, 2012, 131(3): 901-906.
[9] LIGGINS J, FURTH A J. Role of protein-bound carbonyl groups in the formation of advanced glycation endproducts[J]. Biochimica Et Biophysica Acta, 1997, 1 361(2): 123-130.
[10] 江姗姗,梁恩,于淼,等. 对-香豆酸和绿原酸对美拉德反应体系中5-羟甲基糠醛形成的影响[J]. 食品科学, 2012,33(19): 17-20.
[11] 丁晓雯,赵丹霞,侯大军. 加工条件对油条中丙烯酰胺含量的影响[J]. 食品与发酵工业, 2008,34(12): 75-78.
[12] 房红娟,李红姣,张双凤,等. 加工条件对BSA-Glucose模拟体系中晚期糖基化末端产物形成的影响[J]. 食品科学, 2012,33(21): 6-10.
[13] ZHANG G, HUANG G, XIAO L, et al. Determination of advanced glycation endproducts by LC-MS/MS in raw and roasted almonds (Prunus dulcis)[J]. Journal of Agricultural & Food Chemistry, 2011, 59(22): 12 037-12 046.
[14] TU Z, HU Y, WANG H, et al. Microwave heating enhances antioxidant and emulsifying activities of ovalbumin glycated with glucose in solid-State[J]. Journal of Food Science & Technology, 2015, 52(3):1 453-1 461.
[15] AJANDOUZ E H, TSCHIAPE L S, DALLE O F, et al. Effects of pH on caramelization and maillard reaction kinetics in fructose-lysine model systems[J]. Journal of Food Science, 2010, 66(7): 926-931.
[16] 张璆. 高温水热条件下天冬酰胺和葡萄糖的反应产物研究[D]. 南昌:南昌大学, 2014: 13-23.
[17] 姜洪. 氢气抗糖基化终末产物对内皮细胞凋亡的影响及机制研究[D]. 重庆:第三军医大学, 2013: 6-7.
[18] 段邓乐. 微波场内卵清蛋白-葡萄糖美拉德反应产物生成机制初探[D]. 南昌:南昌大学, 2016: 35-39.
[19] 于彭伟. Maillard反应产物抗氧化性能、有害成分分析及其对猪肉保鲜效果的研究[D]. 南京:南京农业大学, 2011: 9-14.
[20] 吴少雄, VAN BOEKE M A J S, MARTINS S I F S, 等. 温度对美拉德反应的研究[J]. 食品科学, 2005,26(7): 63-66.
[21] BARAIBAR M A, LADOUCE R, FRIGUET B. Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging[J]. Journal of Proteomics, 2013, 92(SI): 63-70.
[22] 谢欢. 不同时空条件下微波对蛋清蛋白糖基化反应的影响[D]. 南昌:南昌大学, 2017: 43-54.
[23] CAPUANO E, FOGLIANO V. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies[J]. LWT-Food Science and Technology, 2011, 44(4): 793-810.
[24] 樊振江,孟楠. 油炸食品中丙烯酰胺的形成及减少措施[J]. 粮食流通技术, 2017, 3(6): 27-29.
[25] SHIPP A, LAWRENCE G, GENTRY R, et al. Acrylamide: Review of toxicity data and dose-response analyses for cancer and noncancer effects[J]. Critical Reviews in Toxicology, 2006, 36(6/7): 481-608.
[26] FOHGELBERG P, ROSEN J, HELLENAS K E, et al. The acrylamide intake via some common baby food for children in sweden during their first year of life-an improved method for analysis of acrylamide[J]. Food and Chemical Toxicology, 2005, 43(6): 951-959.
[27] WEDZICHA B L, MOTTRAM D S, ELMORE J S, et al. Kinetic models as a route to control acrylamide formation in food[J]. Advances in Experimental Medicine and Biology, 2005, 561: 235-253.
[28] ARSOV S, GRAAFF R, VAN O W, et al. Advanced glycation end-products and skin autofluorescence in end-stage renal disease: A review[J]. Clinical Chemistry & Laboratory Medicine, 2014, 52(1): 11-20.
[29] 郑晓新,徐尚华. 晚期糖基化终末产物与动脉粥样硬化的关系[J]. 临床心血管病杂志, 2009, 25(10): 748-751.
[30] EWALANGNER, WOJCIECHRZESKI. Biological properties of melanoidins: A review[J]. International Journal of Food Properties, 2014, 17(2): 344-353.
[31] 王亚君. 丙烯酰胺与类黑精生成量的相关性及其体外代谢初探[D]. 杭州:浙江工商大学, 2009: 41-49.