Advances in molecular mechanisms of cold-adapting foodborne bacteria

  • LI Qiuying ,
  • ZHANG Dongdong ,
  • WANG Siwen ,
  • SUN Tong ,
  • LI Tingting ,
  • LI Jianrong
Expand
  • 1(College of Food Science and Technology, Bohai University,Jinzhou 121013,China)
    2(National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products (Bohai University), Jinzhou 121013, China)
    3(College of Life Science, Dalian Minzu University, Dalian 116600, China)

Online published: 2019-03-25

Abstract

Refrigeration can inhibit the growth of foodborne bacteria and extend the shelf life of foods, therefore, it is the most commonly used strategy for food preservation. However, many food-poisoning and food-spoilage bacteria possess strong cold adaptability, which are serious threats to food quality and safety. Elucidating molecular mechanisms underlying cold adaptation of foodborne bacteria is essential for developing and implementing more effective controlling measures. This review focused on discovering key genes responsible for cold response of foodborne bacteria, and the applications of transcriptome and proteomics in researches on mechanisms of cold-adaptation of foodborne bacteria, providing a theoretical reference for researching and controlling foodborne bacteria.

Cite this article

LI Qiuying , ZHANG Dongdong , WANG Siwen , SUN Tong , LI Tingting , LI Jianrong . Advances in molecular mechanisms of cold-adapting foodborne bacteria[J]. Food and Fermentation Industries, 2019 , 45(5) : 246 -252 . DOI: 10.13995/j.cnki.11-1802/ts.019148

References

[1] BEALES N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review [J]. Comprehensive reviews in food science and food safety, 2004, 3(1):1-20.<br /> [2] RUSSELL N J. Bacterial membranes: the effects of chill storage and food processing. An overview[J]. International journal of food microbiology, 2002, 79(1/2): 27-34.<br /> [3] PHADTARE S. Recent developments in bacterial cold-shock response[J]. Current Issues in Molecular Biology, 2004, 6(2): 125-136.<br /> [4] BARRIA C, MALECKI M, ARRAIANO C M. Bacterial adaptation to cold [J]. Microbiology, 2013, 159(12): 2 437-2 443.<br /> [5] MIHAILOVICH M, MILITTI C, GABALDON T, GEBAUER F. Eukaryotic cold shock domain proteins: highly versatile regulators of gene [J]. Bioessays News and Reviews in Molecular Cellular and Developmental Biology, 2010, 32(2): 109-118.<br /> [6] HORN G, HOFWEBER R, KREMER W, KALBITZER H R. Structure and function of bacterial cold-shock proteins [J]. Cellular and Molecular Life Sciences Cmls, 2007, 64(12):1 457-1 470.<br /> [7] SCHINDLER T, GRAUMANN P L, PERL D, et al. The family of cold shock proteins of <i>Bacillus subtilis</i>. Stability and dynamics <i>in vitro</i> and <i>in vivo</i>[J]. Journal of Biological Chemistry, 1999, 274(6): 3 407-3 413.<br /> [8] CHANDA P K, BANDHU A, JANA B, et al. Characterization of an unusual cold shock protein from <i>Staphylococcus aureus</i>[J]. Journal of Basic Microbiology, 2010, 50(6):519-526.<br /> [9] S DERHOLM H, LINDSTR M M, SOMERVUO P, et al. cspB encodes a major cold shock protein in <i>Clostridium botulinum</i> ATCC 3502[J]. International Journal of Food Microbiology, 2011, 146(1): 23-30.<br /> [10] MORGAN H P, WEAR M A, MCNAE I, et al. Crystallization and X-ray structure of cold-shock protein E from <i>Salmonella typhimurium</i>[J]. Acta Crystallographica, 2009, 65(12):1 240-1 245.<br /> [11] SCHMID B, KLUMPP J, RAIMANN E, et al. Role of cold shock proteins in growth of <i>Listeria monocytogenes</i> under cold and osmotic stress conditions[J]. Applied and Environmental Microbiology, 2009, 75(6):1 621-1 627.<br /> [12] ANNAMALAI T, VENKITANARAYANAN K. Expression of major cold shock proteins and genes by <i>Yersinia enterocolitica</i> in synthetic medium and foods[J]. Journal of Food Protection, 2005, 68(11):2 454.<br /> [13] RIIKKA K T, NINA H, EVELIINA P, et al. Cold shock proteins: A minireview with special emphasis on csp-family of <i>Enteropathogenic yersinia</i>[J]. Frontiers in Microbiology, 2016, 7:1 151.<br /> [14] LIU Bo, ZHANG Yuhong, ZHANG Wei. RNA-Seq-based analysis of cold shock response in <i>Thermoanaerobacter tengcongensis</i>, a bacterium harboring a single cold shock protein encoding gene [J]. PLoS ONE, 2014, 9:e93289.<br /> [15] SDERHOLM H, JAAKKOLA K, SOMERVUO P, et al. Comparison of <i>Clostridium botulinum</i> genomes shows the absence of cold shock protein coding genes in type E neurotoxin producing strains[J]. Botulinum J, 2013, 2(3/4):189-207.<br /> [16] GOULIAN M. Two-component signaling circuit structure and properties [J]. Current Opinion in Microbiology, 2010, 13(2):184-189.<br /> [17] HOCH J A. Two-component and phosphorelay signal transduction [J]. Current Opinion in Microbiology, 2000, 3(2): 165-170.<br /> [18] LAUB M T, GOULIAN M. Specificity in two-component signal transduction pathways [J]. Annual Review of Genetics, 2007, 41(1):121-145.<br /> [19] MITROPHANOV A Y, GROISMAN E A. Signal integration in bacterial two-component regulatory systems[J]. Genes & Development, 2008, 22(19): 2 601-2 611.<br /> [20] AGUILAR P S, HERNANDEZ-ARRIAGA A M, CYBULSKI L E, et al. Molecular basis of thermosensing: a two-component signal transduction thermometer in <i>Bacillus subtilis</i>[J]. Embo Journal, 2001, 20(7):1 681-1 691.<br /> [21] BERANOVá J, MANSILLA M C, DE MENDOZA D, et al. Differences in cold adaptation of <i>Bacillus subtilis</i> under anaerobic and aerobic conditions[J]. Journal of Bacteriology, 2010, 192(16):4 164-4 171.<br /> [22] DIOMAND S E, CHAMOT S, ANTOLINOS V, et al. The CasKR two-component system is required for the growth of mesophilic and psychrotolerant <i>Bacillus cereus</i> strains at low temperatures[J]. Applied & Environmental Microbiology, 2014, 80(8):2 493-2 503.<br /> [23] DIOMAND S E, NGUYEN-THE C, ABEE T, et al. Involvement of the CasK/R two-component system in optimal unsaturation of the <i>Bacillus cereus</i> fatty acids during low-temperature growth[J]. International Journal of Food Microbiology, 2015, 213: 110-117.<br /> [24] LINDSTR M M, DAHLSTEN E, SDERHOLM H, et al. Involvement of two-component system CBO0366/CBO0365 in the cold shock response and growth of group I (Proteolytic) <i>Clostridium botulinum </i>ATCC 3502 at low temperatures [J]. Applied & Environmental Microbiology, 2012, 78(15):5 466-5 470.<br /> [25] DERMAN Y, ISOKALLIO M, LINDSTRM M, et al. The two-component system CBO2306/CBO2307 is important for cold adaptation of <i>Clostridium botulinum</i> ATCC 3502 [J]. International Journal of Food Microbiology, 2013, 167(1):87-91.<br /> [26] MASCHER G, DERMAN Y, KIRK D G, et al. The CLO3403/CLO3404 two-component system of <i>Clostridium botulinum </i>E1 Beluga is important for cold shock response and growth at low temperatures [J]. Applied and environmental microbiology, 2014, 80(1):399-407.<br /> [27] PALONEN E, LINDSTR M M, KARTTUNEN R, et al. Expression of signal transduction system encoding genes of <i>Yersinia pseudotuberculosis</i> IP32953 at 28 ℃ and 3 ℃[J]. Plos One, 2011, 6(9):e25 063.<br /> [28] CHAN Y C, RAENGPRADUB S, BOOR K J, et al. Microarray-based characterization of the <i>Listeria monocytogenes</i> cold regulon in log- and stationary-phase cells[J]. Applied & Environmental Microbiology, 2007, 73(20):6 484-6 498.<br /> [29] CHAN Y C, Hu Yuewei, CHATURONGAKUL S, et al. Contributions of two-component regulatory systems, alternative σ factors, and negative regulators to <i>Listeria monocytogenes</i> cold adaptation and cold growth[J]. Journal of food protection, 2008, 71(2):420-425.<br /> [30] P NTINEN A, MARKKULA A, LINDSTR M M, et al. Two-component-system histidine kinases involved in growth of <i>Listeria monocytogenes</i> EGD-e at low temperatures[J]. Applied & Environmental Microbiology, 2015, 81(12): 3 994-4 004.<br /> [31] CHATURONGAKUL S, RAENGPRADUB S, WIEDMANN M, et al. Modulation of stress and virulence in <i>Listeria monocytogenes</i> [J]. Trends in Microbiology, 2008, 16(8):388-396.<br /> [32] CEBRI N G, SAGARZAZU N, AERTSEN A, et al. Role of the alternative sigma factor sigma on <i>Staphylococcus aureus</i> resistance to stresses of relevance to food preservation[J]. Journal of Applied Microbiology, 2009, 107(1):187-196.<br /> [33] HELMANN J D. The extracytoplasmic function (ECF) sigma factors [J]. Advances in Microbial Physiology, 2002, 46(1):47-110.<br /> [34] CARLIN F, BRILLARD J, BROUSSOLLE V, et al. Adaptation of <i>Bacillus cereus</i>, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment[J]. Food Research International, 2010, 43(7):1 885-1 894.<br /> [35] WHITEZIEGLER C A, UM S, P REZ N M, et al. Low temperature (23 degrees C) increases of biofilm-, cold-shock- and RpoS-dependent genes in <i>Escherichia coli</i> K-12[J]. Microbiology, 2008, 154(1):146-148.<br /> [36] KNUDSEN G M, NIELSEN M B, THOMSEN L E, et al. The role of ClpP, RpoS and CsrA in growth and filament formation of <i>Salmonella enterica</i> serovar Typhimurium at low temperature[J]. BMC Microbiology, 2014, 14(1):208.<br /> [37] MCMEECHAN A, ROBERTS M, COGAN T A, et al. Role of the alternative sigma factors σ<sup>E</sup> and σ<sup>S</sup> in survival of <i>Salmonella enterica</i> serovar Typhimurium during starvation, refrigeration and osmotic shock [J]. Microbiology, 2007, 153(1):263-269.<br /> [38] HECKER M, PANE-FARRE J, V ELKER U. SigB-dependent general stress response in <i>Bacillus subtilis</i> and related gram-positive bacteria [J]. Annual Review of Microbiology, 2007, 61(1): 215-236.<br /> [39] SEBAIHIA M, PECK M W, MINTON N P, et al. Genome sequence of a proteolytic (Group I) <i>Clostridium botulinum </i>strain Hall A and comparative analysis of the clostridial genomes[J]. Genome Research, 2007, 17(17):1 082-1 092.<br /> [40] KIRK D G, DAHLSTEN E, ZHANG Zhen, et al. Involvement of <i>Clostridium botulinum</i> ATCC 3502 sigma factor K in early-stage sporulation [J]. Applied & Environmental Microbiology, 2012, 78(13):4 590-4 596.<br /> [41] DAHLSTEN E, KIRK D, LINDSTRM M, et al. Alternative sigma factor SigK has a role in stress tolerance of group I <i>Clostridium botulinum</i> strain ATCC 3502[J]. Applied & Environmental Microbiology, 2013, 79(12):3 867-3 879.<br /> [42] BECKER L A, EVANS S N, HUTKINS R W, et al. Role of sigma(B) in adaptation of <i>Listeria monocytogenes</i> to growth at low temperature[J]. Journal of Bacteriology, 2000, 182(24):7 083-7 087.<br /> [43] UTRATNA M, COSGRAVE E, BAUSTIAN C, et al. Effects of growth phase and temperature on σ<sup>B</sup> activity within a <i>Listeria monocytogenes</i> population: Evidence for RsbV-independent activation of σ<sup>B</sup> at refrigeration temperatures[J]. BioMed research international, 2014, 2013(17):641 647-641 647.<br /> [44] DAHLSTEN E, ISOKALLIO M, SOMERVUO P, et al. Transcriptomic analysis of (Group I) <i>Clostridium botulinum </i>ATCC 3502 cold shock response[J]. Plos One, 2014, 9(2):e89958.<br /> [45] URMERSBACH S, AHO T, ALTER T, et al. Changes in global gene of <i>Vibrio parahaemolyticus</i>, induced by cold- and heat-stress[J]. BMC Microbiology, 2015, 15(1):229.<br /> [46] TANG Jing, JIA Juntao, CHEN Ying, et al. Proteomic analysis of <i>Vibrio parahaemolyticus</i> under cold stress[J]. Current Microbiology, 2017, 75(1):20-26.<br /> [47] JIA Juntao, CHEN Ying, JIANG Yinghu, et al. Proteomic analysis of <i>Vibrio metschnikovii </i>under cold stress using a quadrupole Orbitrap mass spectrometer[J]. Research in Microbiology, 2015, 166(8):618-625.<br /> [48] GARNIER M, MATAMOROS S, CHEVRET D, et al. Adaptation to cold and proteomic responses of the psychrotrophic biopreservative <i>Lactococcus piscium</i> strain CNCM I-4031[J]. Applied & Environmental Microbiology, 2010, 76(24):8 011-8 018.<br /> [49] GOTO S, KAWAMOTO J, SATO S B, et al. Alkyl hydroperoxide reductase enhances the growth of <i>Leuconostoc mesenteroides</i> lactic acid bacteria at low temperatures[J]. AMB Express, 2015, 5(1):11.<br /> [50] CACACE G, MAZZEO M F, SORRENTINO A, et al. Proteomics for the elucidation of cold adaptation mechanisms in <i>Listeria monocytogenes</i>[J]. Journal of Proteomics, 2010, 73(10):2 021-2 030.<br /> [51] ALRESHIDI M M, DUNSTAN R H, MACDONALD M M, et al. Metabolomic and proteomic responses of <i>Staphylococcus aureus</i> to prolonged cold stress[J]. Journal of Proteomics, 2015, 121:44-55.
Outlines

/