[1] BEALES N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review [J]. Comprehensive reviews in food science and food safety, 2004, 3(1):1-20.<br />
[2] RUSSELL N J. Bacterial membranes: the effects of chill storage and food processing. An overview[J]. International journal of food microbiology, 2002, 79(1/2): 27-34.<br />
[3] PHADTARE S. Recent developments in bacterial cold-shock response[J]. Current Issues in Molecular Biology, 2004, 6(2): 125-136.<br />
[4] BARRIA C, MALECKI M, ARRAIANO C M. Bacterial adaptation to cold [J]. Microbiology, 2013, 159(12): 2 437-2 443.<br />
[5] MIHAILOVICH M, MILITTI C, GABALDON T, GEBAUER F. Eukaryotic cold shock domain proteins: highly versatile regulators of gene [J]. Bioessays News and Reviews in Molecular Cellular and Developmental Biology, 2010, 32(2): 109-118.<br />
[6] HORN G, HOFWEBER R, KREMER W, KALBITZER H R. Structure and function of bacterial cold-shock proteins [J]. Cellular and Molecular Life Sciences Cmls, 2007, 64(12):1 457-1 470.<br />
[7] SCHINDLER T, GRAUMANN P L, PERL D, et al. The family of cold shock proteins of <i>Bacillus subtilis</i>. Stability and dynamics <i>in vitro</i> and <i>in vivo</i>[J]. Journal of Biological Chemistry, 1999, 274(6): 3 407-3 413.<br />
[8] CHANDA P K, BANDHU A, JANA B, et al. Characterization of an unusual cold shock protein from <i>Staphylococcus aureus</i>[J]. Journal of Basic Microbiology, 2010, 50(6):519-526.<br />
[9] S DERHOLM H, LINDSTR M M, SOMERVUO P, et al. cspB encodes a major cold shock protein in <i>Clostridium botulinum</i> ATCC 3502[J]. International Journal of Food Microbiology, 2011, 146(1): 23-30.<br />
[10] MORGAN H P, WEAR M A, MCNAE I, et al. Crystallization and X-ray structure of cold-shock protein E from <i>Salmonella typhimurium</i>[J]. Acta Crystallographica, 2009, 65(12):1 240-1 245.<br />
[11] SCHMID B, KLUMPP J, RAIMANN E, et al. Role of cold shock proteins in growth of <i>Listeria monocytogenes</i> under cold and osmotic stress conditions[J]. Applied and Environmental Microbiology, 2009, 75(6):1 621-1 627.<br />
[12] ANNAMALAI T, VENKITANARAYANAN K. Expression of major cold shock proteins and genes by <i>Yersinia enterocolitica</i> in synthetic medium and foods[J]. Journal of Food Protection, 2005, 68(11):2 454.<br />
[13] RIIKKA K T, NINA H, EVELIINA P, et al. Cold shock proteins: A minireview with special emphasis on csp-family of <i>Enteropathogenic yersinia</i>[J]. Frontiers in Microbiology, 2016, 7:1 151.<br />
[14] LIU Bo, ZHANG Yuhong, ZHANG Wei. RNA-Seq-based analysis of cold shock response in <i>Thermoanaerobacter tengcongensis</i>, a bacterium harboring a single cold shock protein encoding gene [J]. PLoS ONE, 2014, 9:e93289.<br />
[15] SDERHOLM H, JAAKKOLA K, SOMERVUO P, et al. Comparison of <i>Clostridium botulinum</i> genomes shows the absence of cold shock protein coding genes in type E neurotoxin producing strains[J]. Botulinum J, 2013, 2(3/4):189-207.<br />
[16] GOULIAN M. Two-component signaling circuit structure and properties [J]. Current Opinion in Microbiology, 2010, 13(2):184-189.<br />
[17] HOCH J A. Two-component and phosphorelay signal transduction [J]. Current Opinion in Microbiology, 2000, 3(2): 165-170.<br />
[18] LAUB M T, GOULIAN M. Specificity in two-component signal transduction pathways [J]. Annual Review of Genetics, 2007, 41(1):121-145.<br />
[19] MITROPHANOV A Y, GROISMAN E A. Signal integration in bacterial two-component regulatory systems[J]. Genes & Development, 2008, 22(19): 2 601-2 611.<br />
[20] AGUILAR P S, HERNANDEZ-ARRIAGA A M, CYBULSKI L E, et al. Molecular basis of thermosensing: a two-component signal transduction thermometer in <i>Bacillus subtilis</i>[J]. Embo Journal, 2001, 20(7):1 681-1 691.<br />
[21] BERANOVá J, MANSILLA M C, DE MENDOZA D, et al. Differences in cold adaptation of <i>Bacillus subtilis</i> under anaerobic and aerobic conditions[J]. Journal of Bacteriology, 2010, 192(16):4 164-4 171.<br />
[22] DIOMAND S E, CHAMOT S, ANTOLINOS V, et al. The CasKR two-component system is required for the growth of mesophilic and psychrotolerant <i>Bacillus cereus</i> strains at low temperatures[J]. Applied & Environmental Microbiology, 2014, 80(8):2 493-2 503.<br />
[23] DIOMAND S E, NGUYEN-THE C, ABEE T, et al. Involvement of the CasK/R two-component system in optimal unsaturation of the <i>Bacillus cereus</i> fatty acids during low-temperature growth[J]. International Journal of Food Microbiology, 2015, 213: 110-117.<br />
[24] LINDSTR M M, DAHLSTEN E, SDERHOLM H, et al. Involvement of two-component system CBO0366/CBO0365 in the cold shock response and growth of group I (Proteolytic) <i>Clostridium botulinum </i>ATCC 3502 at low temperatures [J]. Applied & Environmental Microbiology, 2012, 78(15):5 466-5 470.<br />
[25] DERMAN Y, ISOKALLIO M, LINDSTRM M, et al. The two-component system CBO2306/CBO2307 is important for cold adaptation of <i>Clostridium botulinum</i> ATCC 3502 [J]. International Journal of Food Microbiology, 2013, 167(1):87-91.<br />
[26] MASCHER G, DERMAN Y, KIRK D G, et al. The CLO3403/CLO3404 two-component system of <i>Clostridium botulinum </i>E1 Beluga is important for cold shock response and growth at low temperatures [J]. Applied and environmental microbiology, 2014, 80(1):399-407.<br />
[27] PALONEN E, LINDSTR M M, KARTTUNEN R, et al. Expression of signal transduction system encoding genes of <i>Yersinia pseudotuberculosis</i> IP32953 at 28 ℃ and 3 ℃[J]. Plos One, 2011, 6(9):e25 063.<br />
[28] CHAN Y C, RAENGPRADUB S, BOOR K J, et al. Microarray-based characterization of the <i>Listeria monocytogenes</i> cold regulon in log- and stationary-phase cells[J]. Applied & Environmental Microbiology, 2007, 73(20):6 484-6 498.<br />
[29] CHAN Y C, Hu Yuewei, CHATURONGAKUL S, et al. Contributions of two-component regulatory systems, alternative σ factors, and negative regulators to <i>Listeria monocytogenes</i> cold adaptation and cold growth[J]. Journal of food protection, 2008, 71(2):420-425.<br />
[30] P NTINEN A, MARKKULA A, LINDSTR M M, et al. Two-component-system histidine kinases involved in growth of <i>Listeria monocytogenes</i> EGD-e at low temperatures[J]. Applied & Environmental Microbiology, 2015, 81(12): 3 994-4 004.<br />
[31] CHATURONGAKUL S, RAENGPRADUB S, WIEDMANN M, et al. Modulation of stress and virulence in <i>Listeria monocytogenes</i> [J]. Trends in Microbiology, 2008, 16(8):388-396.<br />
[32] CEBRI N G, SAGARZAZU N, AERTSEN A, et al. Role of the alternative sigma factor sigma on <i>Staphylococcus aureus</i> resistance to stresses of relevance to food preservation[J]. Journal of Applied Microbiology, 2009, 107(1):187-196.<br />
[33] HELMANN J D. The extracytoplasmic function (ECF) sigma factors [J]. Advances in Microbial Physiology, 2002, 46(1):47-110.<br />
[34] CARLIN F, BRILLARD J, BROUSSOLLE V, et al. Adaptation of <i>Bacillus cereus</i>, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment[J]. Food Research International, 2010, 43(7):1 885-1 894.<br />
[35] WHITEZIEGLER C A, UM S, P REZ N M, et al. Low temperature (23 degrees C) increases of biofilm-, cold-shock- and RpoS-dependent genes in <i>Escherichia coli</i> K-12[J]. Microbiology, 2008, 154(1):146-148.<br />
[36] KNUDSEN G M, NIELSEN M B, THOMSEN L E, et al. The role of ClpP, RpoS and CsrA in growth and filament formation of <i>Salmonella enterica</i> serovar Typhimurium at low temperature[J]. BMC Microbiology, 2014, 14(1):208.<br />
[37] MCMEECHAN A, ROBERTS M, COGAN T A, et al. Role of the alternative sigma factors σ<sup>E</sup> and σ<sup>S</sup> in survival of <i>Salmonella enterica</i> serovar Typhimurium during starvation, refrigeration and osmotic shock [J]. Microbiology, 2007, 153(1):263-269.<br />
[38] HECKER M, PANE-FARRE J, V ELKER U. SigB-dependent general stress response in <i>Bacillus subtilis</i> and related gram-positive bacteria [J]. Annual Review of Microbiology, 2007, 61(1): 215-236.<br />
[39] SEBAIHIA M, PECK M W, MINTON N P, et al. Genome sequence of a proteolytic (Group I) <i>Clostridium botulinum </i>strain Hall A and comparative analysis of the clostridial genomes[J]. Genome Research, 2007, 17(17):1 082-1 092.<br />
[40] KIRK D G, DAHLSTEN E, ZHANG Zhen, et al. Involvement of <i>Clostridium botulinum</i> ATCC 3502 sigma factor K in early-stage sporulation [J]. Applied & Environmental Microbiology, 2012, 78(13):4 590-4 596.<br />
[41] DAHLSTEN E, KIRK D, LINDSTRM M, et al. Alternative sigma factor SigK has a role in stress tolerance of group I <i>Clostridium botulinum</i> strain ATCC 3502[J]. Applied & Environmental Microbiology, 2013, 79(12):3 867-3 879.<br />
[42] BECKER L A, EVANS S N, HUTKINS R W, et al. Role of sigma(B) in adaptation of <i>Listeria monocytogenes</i> to growth at low temperature[J]. Journal of Bacteriology, 2000, 182(24):7 083-7 087.<br />
[43] UTRATNA M, COSGRAVE E, BAUSTIAN C, et al. Effects of growth phase and temperature on σ<sup>B</sup> activity within a <i>Listeria monocytogenes</i> population: Evidence for RsbV-independent activation of σ<sup>B</sup> at refrigeration temperatures[J]. BioMed research international, 2014, 2013(17):641 647-641 647.<br />
[44] DAHLSTEN E, ISOKALLIO M, SOMERVUO P, et al. Transcriptomic analysis of (Group I) <i>Clostridium botulinum </i>ATCC 3502 cold shock response[J]. Plos One, 2014, 9(2):e89958.<br />
[45] URMERSBACH S, AHO T, ALTER T, et al. Changes in global gene of <i>Vibrio parahaemolyticus</i>, induced by cold- and heat-stress[J]. BMC Microbiology, 2015, 15(1):229.<br />
[46] TANG Jing, JIA Juntao, CHEN Ying, et al. Proteomic analysis of <i>Vibrio parahaemolyticus</i> under cold stress[J]. Current Microbiology, 2017, 75(1):20-26.<br />
[47] JIA Juntao, CHEN Ying, JIANG Yinghu, et al. Proteomic analysis of <i>Vibrio metschnikovii </i>under cold stress using a quadrupole Orbitrap mass spectrometer[J]. Research in Microbiology, 2015, 166(8):618-625.<br />
[48] GARNIER M, MATAMOROS S, CHEVRET D, et al. Adaptation to cold and proteomic responses of the psychrotrophic biopreservative <i>Lactococcus piscium</i> strain CNCM I-4031[J]. Applied & Environmental Microbiology, 2010, 76(24):8 011-8 018.<br />
[49] GOTO S, KAWAMOTO J, SATO S B, et al. Alkyl hydroperoxide reductase enhances the growth of <i>Leuconostoc mesenteroides</i> lactic acid bacteria at low temperatures[J]. AMB Express, 2015, 5(1):11.<br />
[50] CACACE G, MAZZEO M F, SORRENTINO A, et al. Proteomics for the elucidation of cold adaptation mechanisms in <i>Listeria monocytogenes</i>[J]. Journal of Proteomics, 2010, 73(10):2 021-2 030.<br />
[51] ALRESHIDI M M, DUNSTAN R H, MACDONALD M M, et al. Metabolomic and proteomic responses of <i>Staphylococcus aureus</i> to prolonged cold stress[J]. Journal of Proteomics, 2015, 121:44-55.