Modeling the drying process of Pleurotus eryngii using
Weibull distribution and its physicochemical properties

  • SONG Zhen ,
  • JI Changying ,
  • ZHANG Bo
Expand
  • 1(College of Engineering, Nanjing Agriculture University, Nanjing 210031, China)

Received date: 2018-08-20

  Revised date: 2018-10-12

  Online published: 2019-05-14

Abstract

The effects of drying temperature (40, 50, 60 ℃) and slice thickness (4, 7, 10 mm) on drying characteristics, shrinkage rate, rehydration kinetics, color, and amino acids contents of Pleurotus eryngii were investigated using a heat pump dryer. The results indicated that the Weibull distribution could well mimic the drying process of Pleurotus eryngii by heat pump drying. The scale parameter (α) decreased with increasing temperature, and it increased with increasing slice thickness. The average shape parameter (β) was less than 1. At the beginning of the drying process, the shrinkage rate of sample volume and decreased moisture content showed a linear relationship. When the moisture content reduced to 60%, the volume shrank to 70% of its original volume, but the changes were not obvious. The Page model could well simulate the rehydration kinetics of Pleurotus eryngii. Pleurotus eryngii dried at 50℃ with 4 or 7 mm slice thickness showed desirable color appearance. Long drying time and high temperature would worsen the color of Pleurotus eryngii. Moreover, Pleurotus eryngii dried at low temperature could retain higher amino acids contents. This study can provide references for applying heat pump drying technology to produce dried Pleurotus eryngii at an industrial scale.

Cite this article

SONG Zhen , JI Changying , ZHANG Bo . Modeling the drying process of Pleurotus eryngii using
Weibull distribution and its physicochemical properties[J]. Food and Fermentation Industries, 2019
, 45(8) : 71 -78 . DOI: 10.13995/j.cnki.11-1802/ts.018557

References

[1] 李月梅,采俊香,牛瑞青.不同基质配方工厂化栽培杏鲍菇研究[J].北方园艺,2012 (7):177-179.
[2] 李丽,孙健,盛金凤,等.山药热泵干燥特性及数学模型的研究[J].现代食品科技,2014,30(10):212-217.
[3] 杨韦杰,唐道邦,徐玉娟,等.荔枝热泵干燥特性及干燥数学模型[J]. 食品科学,2013,34(11):104-108.
[4] 罗磊,支梓鉴,刘云宏,等.苹果片气调热泵干燥特性及数学模型[J]. 食品科学,2014,35(5):13-17.
[5] PHOUNGCHANDANG S, SAENTAWEESUK S. Effect of two stage, tray and heat pump assisted-dehu-midified drying on drying characteristics and qualities of dried ginger[J]. Food and Bioproducts Processing, 2011, 89(4):429-437.
[6] 林喜娜,王相友.苹果切片红外辐射干燥模型建立与评价[J].农业机械学报2010,41(6):128-132.
[7] 白竣文,王吉亮,肖红伟,等.基于Weibull分布函数的葡萄干燥过程模拟及应用[J].农业工程学报,2013,29(16):278-285.
[8] 吴青荣,张绪坤,王高敏,等.用Weibull函数分析单粒莲子热风干燥的水分扩散系数和活化能[J].食品科技,2017,42(3):103-108.
[9] BANTLE M, KOLSAKER K, EIKEVIK T M.Modification of the weibull distribution for modeling atmospheric freeze-drying of food[J].Drying Technology, 2011, 29 (10):1 161-1 169.
[10] GB5009.3—2016,食品中水分的测定[S].北京:中国标准出版社,2006.
[11] 孙翠,王钰,沈小瑞,等. 杏鲍菇热风——真空冷冻干燥工艺优化[J]. 食品与机械,2017,33(2):189-193.
[12] ZHAO D D, AN K J,DING S H, et al. Two-stage intermittent microwave coupled with hot-air drying of carrot slices: Drying kinetics and physical quality[J]. Food and Bioprocess Technology,2014,7(8):2 308-2 318.
[13] 关志强,王秀芝,李敏,等. 荔枝果肉热风干燥薄层模型[J]. 农业机械学报,2012,43(2):151-158;191.
[14] 种翠娟,朱文学,刘云宏,等.胡萝卜薄层干燥动力学模型研究[J].食品科学,2014,35(9):24-29.
[15] 陈登宇,朱锡锋.生物质热反应机理与活化能确定方法Ⅰ.干燥段研究[J].燃料化学学报,2011,39(8):580-584.
[16] 孟岳成,王雷,陈杰,等.姜片热风干燥模型适用性及色泽变化[J].食品科学,2014,35(21):100-105.
[17] 赵丹丹,陈冬,彭郁,等.枸杞热风干燥过程动力学模型及品质分析[J].中国食品学报,2018,18(3):114-124.
[18] 杨玲,陈建,杨屹立,等.甘蓝型油菜籽热风干燥特性及其数学模型[J].现代食品科技,2014,30(8):144-150.
[19] 曹建康,姜微波,赵玉梅.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社,2007:41-44.
[20] WANG J, LAW C L, NEMA P K, et al. Pulsed vacuum drying enhances drying kinetics and quality of lemon slices[J]. Journal of Food Engineering,2018,224:129-138.
[21] ARAL S, BEE A V. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity[J]. Food Chemistry, 2016,210:577-584.
[22] RAMALLO L A, MASCHERONI R H. Quality evaluation of pineapple fruit during drying process[J]. Food and Bioproducts Processing, 2012,90 (2):275-283.
[23] 黄珊,王修俊,沈畅萱.白萝卜薄层热风干燥特性及其数学模型[J].食品与机械,2017,33(8):137-143;193.
[24] DEMIRAY E, TULEK Y. Drying characteristics of garlic(Allium sativum L) slices in a convective hot air dryer[J].Heat and Mass Transfer,2014(50):779-786.
[25] 王存堂,张雄峰,杨丽,等.干制温度和切片厚度对山楂切片热风干制动力学的影响[J].食品工业科技,2016,37(13):131-136.
[26] 吴雪辉,龙婷,王泽富,等.油茶籽热泵干燥特性及模型的研究[J].中国粮油学报,2018,33(1):111-117.
[27] DOYMAZ I. The kinetics of forced convective air-drying of pumpkin slices[J].Journal of Food Engineering,2007,79(1):243-248.
[28] DOYMAZ I, ISMAIL O. Experimental characterization and modeling of drying of pear slices[J].Food Science and Biotechnology,2012,21(5):1 377-1 381.
[29] MPREIRA R, CHENLO F, CHAGURI L, et al. Mathematical modelling of the drying kinetics of chestnut (Castanea Sativa Mill.) [J].Food and Bioproducts Processing, 2015,83 (C4):306-314.
[30] YAN Z, SOUSA-GALLAGHER M J, OLIVEIRA F A. Shrinkage and porosity of banana, pineapple and mango slices during air-drying[J]. Journal of Food Engineering, 2008,84 (3): 430-440.
Outlines

/