[1] 吴建华,吴志瑰,裴建国,等. 多酚类化合物的研究进展[J]. 中国现代中药, 2015, 17(6):630-636.
[2] HOSSEN M S, ALI M Y, JAHURUL M, et al. Beneficial roles of honeypolyphenols against some human degenerative diseases: A review[J]. Pharmacological Reports, 2017, 69(6):1 194-1 205.
[3] BUITIMEACANTÚ A N E, GUTIÉRREZURIBE J A, SERNASALDÍVAR S O.Phenolic-protein interactions: Effects on food properties and health benefits[J]. Journal of Medicinal Food, 2018, 21(2):188-198.
[4] KROLL J, RAWEL H M, ROHN S. Reactions of plant phenolics with food proteins and enzymes under special consideration of covalent bonds[J]. Foodence & Technology Research, 2007, 9(3):205-218.
[5] 敖自华,莫茂松,罗昌荣. 饮料中蛋白质-多酚的作用机制(续)[J]. 江苏食品与发酵, 2000, 4: 29-32.
[6] CANON F, PATÉ F, MEUDEC E, et al. Characterization,stoichiometry, and stability of salivary protein-tannin complexes by ESI-MS and ESI-MS/MS[J]. Analytical & Bioanalytical Chemistry, 2009, 395(8):2 535-2 545.
[7] ULRIH N P. Analytical techniques for the study ofpolyphenol and protein interactions[J]. C R C Critical Reviews in Food Technology, 2017, 57(10):2 144-2 161.
[8] SHI C, TANG H, XIAO J, et al. Small-angle X-ray scattering study of protein complexes with teapolyphenols[J]. Journal of Agricultural & Food Chemistry, 2017, 65(3):656-665.
[9] SÁNCHEZMILLA M, PASTOR I, MALY M, et al. Study of non-covalent interactions ondendriplex formation: Influence of hydrophobic, electrostatic and hydrogen bonds interactions[J]. Colloids & Surfaces B Biointerfaces, 2017, 162:380-388.
[10] 刘夫国,马翠翠,王迪,等. 蛋白质与多酚相互作用研究进展[J]. 食品与发酵工业, 2016, 42(2):282-288.
[11] HASLAM E. Plantpolyphenols: Vegetable tannins revisited[J]. Quarterly Review of Biology, 1989, 29(7):187-189.
[12] 刘勤勤,郭晓娜,彭伟,等. 茶多酚与大豆分离蛋白的相互作用[J]. 食品科学, 2015, 36(17):43-47.
[13] 肖建波. 多酚类化合物与血清白蛋白相互作用的结构-结合力关系、理论模型和应用研究[D]. 长沙:中南大学, 2009.
[14] 綦菁华,蔡同一,庞美霞,等. 影响蛋白质-酚类聚合物形成的因素研究[J]. 中国食品学报, 2009, 9(6):78-82.
[15] O’CONNELL J E, FOX P F. Effects of phenolic compounds on the heat stability of milk and concentrated milk[J]. Journal of Dairy Research, 1999, 66(3):399-407.
[16] PRIGENT S V, GRUPPEN H, VISSER A J, et al. Effects of non-covalent interactions with 5-O-caffeoylquinic acid (chlorogenic acid) on the heat denaturation and solubility of globular proteins[J]. Journal of Agricultural & Food Chemistry, 2003, 51(17):5 088-5 095.
[17] 陶亚丹. 加工过程和配料对果汁多酚生物可及性的影响[D]. 无锡:江南大学, 2015.
[18] 徐洁琼,曾茂茂,秦昉,等. 热加工处理对β-乳球蛋白与茶多酚间相互作用的影响[J]. 食品与发酵工业, 2017, 43(8):96-102.
[19] CZUBINSKI J, DWIECKI K. A review of methods used for investigation of protein-phenolic compound interactions[J]. International Journal of Food Science & Technology, 2017, 52(3):1-13.
[20] NIKIFORIDIS C, KAREFYLLAKIS D, SALAKOU S, et al. Covalent bonding of chlorogenic acid induces structural modifications on sunflower proteins[J]. Chemphyschem, 2018, 19: 459-468.
[21] WILDE S C, KEPPLER J K, PALANI K, et al. β-Lactoglobulin as nanotransporter for allicin: Sensory properties and applicability in food[J]. Food Chemistry, 2016, 199:667-674.
[22] BUDRYN G, PALECZ B, RACHWAL-ROSIAK D, et al. Effect of inclusion of hydroxycinnamic and chlorogenic acids from green coffee bean in β-cyclodextrin on their interactions with whey, egg white and soy protein isolates[J]. Food Chemistry, 2015, 168:276-287.
[23] PRIGENT S V, VORAGEN A G, VISSER A J, et al. Covalent interactions between proteins and oxidation products of caffeoylquinic acid (chlorogenic acid)[J]. Journal of the Science of Food & Agriculture, 2010, 87(13):2 502-2 510.
[24] WU X, LU Y, XU H, et al. Reducing the allergenic capacity of β-lactoglobulin by covalent conjugation with dietary polyphenols[J]. Food Chemistry, 2018, 256:427-434.
[25] SUI X, SUN H, QI B, et al. Functional and conformational changes to soy proteins accompanying anthocyanins: Focus on covalent and non-covalent interactions[J]. Food Chemistry, 2017, 245:871-878.
[26] O’CONNELL J E, FOX P F. Significance and applications of phenolic compounds in the production and quality of milk and dairy products: A review[J]. International Dairy Journal, 2001, 11(3):103-120.
[27] LIU F, MA C, MCCLEMENTS D J, et al. A comparative study of covalent and non-covalent interactions between zein and polyphenols in ethanol-water solution[J]. Food Hydrocolloids, 2017, 63:625-634.
[28] REIN M J, RENOUF M, CRUZHERNANDEZ C, et al. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy[J]. British Journal of Clinical Pharmacology, 2013, 75(3):588-602.
[29] CHANG Y L. Challenges in providing credible scientific evidence of health benefits of dietarypolyphenols[J]. Journal of Functional Foods, 2013, 5(1):524-526.
[30] 王丽颖,李福香,杨雅轩,等. 多糖与多酚相互作用机制及其对多酚特性的影响研究进展[J]. 食品科学, 2017, 38(11):276-282.
[31] 任霞霞,刘连亮,张鑫,等. 酚类化合物与食品大分子互作代谢研究进展[J]. 食品工业科技, 2017, 38(14):321-325.
[32] BOUAYED J,DEUβER H, HOFFMANN L, et al. Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns[J]. Food Chemistry, 2012, 131(4):1 466-1 472.
[33] CROZIER A, DEL R D, CLIFFORD M N. Bioavailability of dietaryflavonoids and phenolic compounds[J]. Molecular Aspects of Medicine, 2010, 31(6):446-467.
[34] OZDAL T, SELA D A, XIAO J, et al. The reciprocal interactions betweenpolyphenols and gut microbiota and effects on bioaccessibility[J]. Nutrients, 2016, 8(2):78-114.
[35] XIAO Y, CHEN X, YANG L, et al. Preparation and oral bioavailability study ofcurcuminoid-loaded microemulsion[J]. Journal of Agricultural & Food Chemistry, 2013, 61(15):3 654-3 660.
[36] HUANG Y C, KUO T H. O-carboxymethyl chitosan/fucoidan nanoparticles increase cellular curcumin uptake[J]. Food Hydrocolloids, 2016, 53:261-269.
[37] LIU Y, LIU D, ZHU L, et al. Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome[J]. Food Research International, 2015, 74:97-105.
[38] HITHAMANI G, SRINIVASAN K. Effect of domestic processing on the polyphenol content and bioaccessibility in finger millet (Eleusine coracana) and pearl millet (Pennisetum glaucum)[J]. Food Chemistry, 2014, 164:55-62.
[39] 刘婵,何志勇,秦昉,等. 多酚与蛋白质、消化酶相互作用的研究进展[J]. 食品与发酵工业, 2015, 41(11):256-260.
[40] DUFOUR C, LOONIS M, DELOSIÈRE M, et al. The matrix of fruit & vegetables modulates the gastrointestinalbioaccessibility of polyphenols and their impact on dietary protein digestibility[J]. Food Chemistry, 2017, 240:314-322.
[41] LAMOTHE S, AZIMY N, BAZINET L, et al. Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment[J]. Food & Function, 2014, 5(10):2 621-2 631.
[42] HELAL A, TAGLIAZUCCHI D, VERZELLONI E, et al.Bioaccessibility of polyphenols and cinnamaldehyde in cinnamon beverages subjected to in vitro, gastro-pancreatic digestion[J]. Journal of Functional Foods, 2014, 7(1):506-516.
[43] ROURA E, ANDRÉSLACUEVA C, ESTRUCH R, et al. Milk does not affect the bioavailability of cocoa powderflavonoid in healthy human[J]. Annals of Nutrition & Metabolism, 2007, 51(6):493-498.
[44] GREEN R J, MURPHY A S, SCHULZ B, et al. Common tea formulations modulate in vitro digestive recovery of green teacatechins[J]. Molecular Nutrition and Food Research, 2007, 51(9):1 152-1 162.
[45] CHANPHAI P, BOURASSA P, KANAKIS C D, et al. Review on the loading efficacy of dietary teapolyphenols with milk proteins[J]. Food Hydrocolloids, 2018, 77:322-328.
[46] YILDIRIMELIKOGLU S, ERDEM Y K. Interactions between milk proteins and polyphenols: Binding mechanisms, related changes and the future trends in dairy industry[J]. Food Reviews International, 2017, 34(7):665-697.
[47] XIE Y, KOSI SKA A, XU H, et al. Milk enhances intestinal absorption of green tea catechins in in vitro digestion/Caco-2 cells model[J]. Food Research International, 2013, 53(2):793-800.