Safety assessment and optimized cultural and induction conditions forEnterococcus faecium Ef2 producing amine oxidase

  • LI Binbin ,
  • SONG Guisen ,
  • QUAN Xinjie ,
  • PU Yan ,
  • XU Ye ,
  • NIU Shuhui ,
  • AO Xiaolin ,
  • CHEN Shujuan ,
  • HE Li ,
  • LIU Shuliang ,
  • YANG Yong
Expand
  • College of Food Science, Sichuan Agricultural University, Ya’an 625014, China)

Received date: 2018-12-18

  Online published: 2019-06-06

Abstract

Hemolysis tests, antibiotics susceptibility tests, and PCR amplification of virulence genes and drug resistance genes were used to assess the safety of Enterococcus faecium Ef2. The results of hemolysis tests were negative. E. faecium Ef2 was not sensitive to gentamicin and streptomycin, but it was sensitive to vancomycin and most of other antibiotics. No virulence genes were detected, and therefore the strain could be preliminarily determined as safe. The induction medium and culture conditions of producing amine oxidase by this strain were optimized. The optimal components of the induction medium included 50 g/L lactose, 6 g/L putrescine, 8 g/mL yeast extract, 3 g/L MgSO4, 0.03 g/L MnSO4, and 1.5 g/L sodium acetate. The optimal culture condition was as follows: initial pH of 7.0, 0.5% inoculation, cultured for 36 h at 32 ℃. The activity of amine oxidase increased by 139.63% to 26.12 U/mL after induction. The results showed that the activity of amine oxidase produced by E. faecium Ef2 could be greatly increased by optimizing the culture and induction conditions, which lays a foundation for further study on producing amine oxidase by this strain.

Cite this article

LI Binbin , SONG Guisen , QUAN Xinjie , PU Yan , XU Ye , NIU Shuhui , AO Xiaolin , CHEN Shujuan , HE Li , LIU Shuliang , YANG Yong . Safety assessment and optimized cultural and induction conditions forEnterococcus faecium Ef2 producing amine oxidase[J]. Food and Fermentation Industries, 2019 , 45(9) : 41 -48 . DOI: 10.13995/j.cnki.11-1802/ts.019666

References

[1] CINQUINA A L, CALì A, LONGO F, et al. Determination of biogenic amines in fish tissues by ion-exchange chromatography with conductivity detection[J]. Journal of Chromatography A, 2004, 1032(1-2): 73-77.
[2] GERNER E W, MEYSKENS F L. Polyamines and cancer: old molecules, new understanding[J]. Nature Reviews Cancer, 2004, 4(10): 781-792.
[3] LADERO V, CALLES-ENRQUEZ M, FERNNDEZ M, et al. Toxicological effects of dietary biogenic amines[J]. Current Nutrition and Food Science, 2010, 6(2): 145-156.
[4] SPANO G, RUSSO P, LONVAUD F A, et al. Biogenic amines in fermented foods[J]. European Journal of Clinical Nutrition, 2010, 64(11): 95-100.
[5] SETTANNI L, MOSCHETTI G. New trends in technology and identity of traditional dairy and fermented meat production processes: Preservation of typicality and hygiene[J]. Trends in Food Science & Technology, 2014, 37(1): 51-58.
[6] 王光强, 俞剑燊,胡健,等. 食品中生物胺的研究进展[J]. 食品科学, 2016, 37(1): 269-278.
[7] LINARES D M, RIO B D, REDRUELLO B, et al. Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine [J]. Food Chemistry, 2016, 197(1): 658-663.
[8] LORENZOA C, BORDIGAB M, PéREZ-áLVAREZC E P, et al. The impacts of temperature, alcoholic degree and amino acids content on biogenic amines and their precursor amino acids content in red wine[J]. Food Research International, 2017, 9(99): 328-335.
[9] LATORRE M M L, BOVER C S, AYMERICH T, et al. Amino genesis control in fermented sausages manufactured with pressurized meat batter and starter culture[J]. Meat Science, 2007, 75(3): 460-469.
[10] XIE C, WANG H H, NIE X K, et al. Reduction of biogenic amine concentration in fermented sausage by selected starter cultures[J]. CYTA-Journal of Food, 2015, 13(4): 491-497.
[11] ZHANG H C, LU S L, MA Y X, et al. Effects of biogenic amine oxidase producing strains during the maturation of smoked horsemeat sausages[J]. Modern Food Science and Technology, 2015, 31(6): 122-128.
[12] 张楠, 杨勇,李彬彬,等. 四川自然发酵香肠中组胺降解菌的筛选鉴定及初步应用[J]. 食品与发酵工业, 2018, 44(1): 72-79.
[13] LEE H I, KIM Y M, RO Y T. Purification and characterization of a copper-containing amine oxidase from Mycobacterium sp. strain JC1 DSM 3803 grown on benzylamine[J]. Journal of Biochemistry, 2008, 144(1): 107-114.
[14] YAGODINA O V, NIKOL'SKAYA E B, KHOVANSKIKH A E, et al. Amine oxidases of microorganisms[J]. Journal of Evolutionary Biochemistry and Physiology, 2002, 38(3): 251-258.
[15] 曾广冰. 单胺氧化酶的硏究进展[J]. 中国民族民间医药,2010, 19(12): 18.
[16] FOSTER A, BARNES N, SPEIGHT R, et al. Genomic organization, activity and distribution analysis of the microbial putrescine oxidase degradation pathway[J]. Systematic and Applied Microbiology, 2013, 36(7): 457-466.
[17] 李彬彬, 徐晔,牛淑慧,等. 食品中生物胺含量及生物胺氧化酶的研究进展[J]. 食品科学, 2019, 40(1): 341-347.
[18] 周小虎, 朱霞,王磊,等. 黑曲霉产胺氧化酶培养及诱导条件的优化[J]. 中国酿造, 2016, 36(6): 96-100.
[19] 孙霞. 四川香肠中生物胺降解菌的筛选鉴定及其初步应用研究[D]. 雅安:四川农业大学, 2016.
[20] 凌代文, 东秀珠. 乳酸细菌鉴定及实验方法[M]. 北京:中国轻工业出版社, 1999.
[21] 王雪芹, 林海君,鞠世影,等. 两株粪肠球菌的安全性评价[J]. 食品工业科技, 2014, 35(8): 166-169.
[22] 顾欣, 商军,张文刚,等. 猪源分离粪肠球菌的耐药性及基因型分析[J]. 中国抗生素杂志, 2017, 42(3): 225-229.
[23] 黄支密, 石晓霞,糜祖煌,等. 肠球菌抗生素耐药基因检测[J]. 中华医院感染学杂志, 2006, 16(1): 1-5.
[24] 陈敏强, 汪强,周永列,等. 耐万古霉素肠球菌临床菌株毒力基因携带情况及差异[J]. 中国人兽共患病学报, 2017, 33(5): 423-426.
[25] FOSTER A, BARNES N, SPEIGHT R, et al. Identification, functional expression and kinetic analysis of two primary amine oxidases from Rhodococcus opacus[J]. Journal of Molecular Catalysis B: Enzymatic, 2012, 74(1-2): 73-82.
[26] 王文娟, 孙冬岩,孙笑非,等. 饲用肠球菌的益生功能及其安全性评价[J]. 饲料研究, 2014, 23(13): 48-50.
[27] 王晓蕊, 邹婷婷,郭志富,等. 豆酱中产细菌素屎肠球菌的筛选及特性分析[J]. 食品与发酵工业, 2016, 42(4): 91-97.
[28] OKAMURA H, MUROOKA Y, HARADA T. Regulation of tyramine oxidase synthesis in Klebsiella aerogenes[J]. Journal of Bacteriology, 1976, 127(1): 24-31.
[29] 朱霞. 黑曲霉胺氧化酶的酶学性质及对BA降解特性研究[D]. 武汉:湖北工业大学, 2015.
[30] 夏宏钢, 何楚莹,陈卫,等. 双歧杆菌生长因子的研究[J]. 乳业科学与技术, 2003, 3: 112-117.
Outlines

/