This study aimed to prepare new resistant starches that have α-amylase inhibitory groups and high hypoglycemic activity. α-amylase inhibitors (lauric acid, myristic acid, and palmitic acid) were used as active groups to modify potato starches with cross-linked epichlorohydrin. The new resistant starches were characterized by infrared spectrum, and their digestion performances were determined in vitro. The results showed that several new resistant starches with α-amylase inhibitory groups were successfully prepared. The digestibility of laurate starch ester, myristic acid starch ester, and palmitate starch ester were 80.4%, 76.6%, and 75.5%, respectively, lower than that of the original cross-linked starch. In conclusion, the resistant starches with α-amylase inhibitory groups had higher hypoglycemic activity and therefore could be used as foods for diabetics.
[1] 中华医学会糖尿病学分会.中国型糖尿病防治指南[J].中国糖尿病杂志, 2014, 22(8):3.
[2] International Diabetes Federation. [J].International Diabetes Federation, 2013, 6(6):8.
[3] FLORENCE N T, BENOIT M Z,ALEXANDRA T,et al. Antidiabetic and antioxidant effects of Annona muricata (Annonaceae),aqueous extract on streptozotocin-induced diabetic rats[J]. Journal of Ethnopharmacology, 2014, 151(2):784-790.
[4] 《中国医院院长》编辑部.中国2013年糖尿病患病人数达9840万人[J].中国医院院长, 2013, 23(1):23.
[5] MARCOVECCHIO M, MOHN A, CHIARELLI F, et al. Type 2 diabetes mellitus in children and adolescents[J].Journal of Endocrinological Investigation, 2005, 28(11):853-863.
[6] POSUWAN J, PRANGTHIP P, LEARDKAMOLKARN V, et al. Long-term supplementation of high pigmented rice bran oil (Oryza sativa L.) on amelioration of oxidative stress and histological changes in streptozotocin-induced diabetic rats fed a high fat diet; Riceberry bran oil[J]. Food Chemistry, 2013, 138(1):501-508.
[7] CHARPENTIER G, RIVELINE J P, VARROUD-VIAL M. Management of drugs affecting blood glucose in diabetic patients with renal failure[J]. Diabetes Metab, 2000, 26(4):73-85.
[8] LORDAN S, SMYTH TJ, SOLER-VILA A, et al. The alpha-amylase and alpha-glucosidase inhibitory effects of Irish seaweed extracts[J].Food Chemistry, 2013, 141(3):2 170-2 176.
[9] PANDEY A, NIGAM P, SOCCOL, C R, et al. Advances in microbial amylases[J].Biotechnology and Applied Biochemistry, 2000, 31(2):135-152.
[10] 马艳丽, 让一峰,赵伟,等. 白芸豆α-淀粉酶抑制剂在低方便粥中的应用[J].江苏大学学报自然科学版, 2018, 39(1):45-48.
[11] LOW L C, MBCHB M D, FRCPCH, et al. The epidemic of type 2 diabetes mellitus in the Asia-Pacific region[J].Pediatric Diabetes, 2010, 11(4):212-215.
[12] SUBRAMANIAN R, ASMAWIM Z, SADIKUN Z. In vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide [J].Acta Biochimica Polonica, 2008, 55(2):391-395.
[13] RIDA S M, EL-HAWASH S A, FAHMY H T, et al. Synthesis and in vitro evaluation of some novel benzofuran derivatives as potential anti-HIV-1,anticancer,and antimicrobial agents[J].Archives of Pharmacal Research, 2006, 29(1):16-25.
[14] MATSUI T, TANAKA T, TAMURA S, et al. Glucosidase inhibitory profile of catechins and theaflavins[J].Journal of Agricultural and Food Chemistry, 2007, 55(1):99-105.
[15] HEO SJ, HWANG J Y, CHOI J I, et al. Diphlorethohy droxycarmalol isolated from Ishige okamurae,a brown algae, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice[J].European Journal of Pharmacology, 2009, 615(1):252-256.
[16] 王洁,徐同成,刘丽娜,等.马铃薯淀粉消化性能研究进展[J].中国食物与营养, 2016, 22(5):34-37.
[17] 王蕾蕾, 何芳,樊慧茹,等.高抗性淀粉大米血糖生成指数测定及对糖尿病患者血糖调控的干预研究[J].营养学报, 2017, 39(2):197-199.
[18] KEENAN M J, ZHOU J, HEQSTED M, et al. Role of resistant starch in improving gut health, adiposity, and insulin resistance[J].Advances in Nutrition, 2015, 6(2):198-205.
[19] HEDEMANN M S,HERMANSEN K,PEDERSEN S,et al. Resistant starch but not enzymatically modified waxy maize delays development of diabetes in zucker diabetic fatty rats[J].Journal of Nutrition, 2017, 147(5):825-834.
[20] BODINHAM C L, SMITH L, THOMAS E L, et, al. Efficacy of increased resistant starch consumption in human type 2 diabetes[J].Endocr Connect, 2014, 3(2):75-84.
[21] 姜余梅, 杨艳,陈晓姗,等.灵芝孢子和抗性淀粉对糖尿病大鼠糖脂代谢及氧化应激的协同干预[J].食品科学, 2014, 35(23):288-291.
[22] LIN C H, CHANG D M, WU D J, et al. Assessment of blood glucose regulation and safety of resistant starch formula-based diet in healthy normal and subjects with type 2 diabetes[J].Medicine (Baltimore), 2015, 94(3):1 332.
[23] SUN Hui, MA Xiaohan, ZHANG Shiqi, et al. Resistant starch produces antidiabetic effects by enhancing glucose metabolism and ameliorating pancreatic dysfunction in type 2 diabetic rats[J].International Journal of Biological Macromolecules, 2018, 110(3):2 776-2 784.
[24] WANG Qi, ZHENG Yafeng, ZHUANG Weijing, et al.Genome-wide transcriptional changes in type 2 diabetic mice supplemented with lotus seed resistant starch[J]. Food Chemistry, 2018, 264(4):427-434.
[25] 闵玉涛, 宋彦显,马庆一,等.环氧氯丙烷交联淀粉的制备及其体外消化性能的研究[J].食品工业科技, 2011, 32(8):261-263.
[26] 宋彦显, 闵玉涛,徐凤才,等.五倍子中α-淀粉酶抑制因子的研究[J].食品科学, 2011, 32(19):116-119.
[27] 宋彦显, 闵玉涛.淀粉仿生消化法的建立及其应用[J].食品研究与开发, 2012, 33(11):68-71.