Optimized fermentation condition for Zygosaccharomyces rouxii producing glucuronic acid

  • LI Yifeng ,
  • FANG Fang
Expand
  • 1(Key Laboratory of Industrial Biotechnology, Ministry of Education (Jiangnan University), Wuxi 214122, China)
    2(State Key Laboratory of Food Science and Technology (Jiangnan University), Wuxi 214122, China)

Received date: 2019-01-10

  Online published: 2019-06-17

Abstract

The fermentation condition for producing GlcUA by Zygosaccharomyces rouxii ZSR2, a GlcUA producer, was optimized by single factor experiments. It was found that the titer of GlcUA under the optimal fermentation condition (the medium contained 80 g/L sucrose, 30 g/L soy peptone, initial pH=5.0, with 3% inoculum and aged for 9 h) was 14.68 g/L, which was 3.8 times higher than that of unoptimized. Besides, the production of GlcUA enhanced to 22.36 g/L by fed-batch fermentation, which was the highest level reported regarding GlucUA production by single strain fermentation. In conclusion, this study lays a foundation for industrial production of GlcUA by microbial fermentation.

Cite this article

LI Yifeng , FANG Fang . Optimized fermentation condition for Zygosaccharomyces rouxii producing glucuronic acid[J]. Food and Fermentation Industries, 2019 , 45(10) : 42 -47 . DOI: 10.13995/j.cnki.11-1802/ts.019905

References

[1] HOU Z, LIU Y, ZHANG X X, et al. Synthesis of glucuronic acid derivatives via the efficient and selective removal of a C6 methyl group[J]. Tetrahedron Letters, 2016, 5(5):423-426.
[2] MOON T S, YOON S H, LANZA A M, et al. Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli[J]. Applied and Environmental Microbiology, 2009, 75(3): 589-595.
[3] JAYABALAN R, SUBATHRADEVI P, MARIMUTHU S, et al. Changes in free-radical scavenging ability of Kombucha tea during fermentation[J]. Food Chemistry, 2008, 109(1): 227-234.
[4] DELATTRE C, MICHAUD P, LION J M, et al. Production of glucuronan oligosaccharides using a new glucuronan lyase activity from a Trichoderma sp. strain[J]. Journal of Biotechnology, 2005, 118(4): 448-457.
[5] KOIZUMI S. Large-scale production of oligosaccharides using bacterial functions[J]. Trends in Glycoscience and Glycotechnology, 2010, 15(82): 65-74.
[6] NGUYEN N K, NGUYEN H T, LE P H. Effects of Lactobacillus casei and alterations in fermentation conditions on biosynthesis of glucuronic acid by a Dekkera bruxellensis-Gluconacetobacter intermedius Kombucha symbiosis model system[J]. Food Biotechnology, 2015, 29(4): 356-370.
[7] VINA I, SEMJONOVS P, LINDE R, et al. Glucuronic acid containing fermented functional beverages produced by natural yeasts and bacteria associations[J]. International Journal of Research and Reviews in Applied, 2013, 14(1): 17-25.
[8] CIMINI D, ROSA M D, SCHIRALDI C. Production of glucuronic acid-based polysaccharides by microbial fermentation for biomedical applications[J]. Biotechnology Journal, 2012, 7(2): 237-250.
[9] 陈辉, 和娴娴. 葡萄糖醛酸及其内酯制备方法的研究进展[J]. 山东食品发酵, 2011(1): 6-8.
[10] 周锡堂, 林培喜, 胡智华. 葡醛内酯生产工艺改进研究[J]. 桂林工学院学报,2003(1):132-135.
[11] 郭耀基,王晓峰,唐黎华. 采用二次内酯化方法从葡醛内酯生产废液中回收产品[J]. 无锡轻工大学学报,2004,23(2):67-70;75.
[12] 房媛. 葡萄糖醛酸内酯清洁生产[D]. 西安:陕西科技大学,2013.
[13] SHIUE E, PRATHER K L. Improving D-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport[J]. Metabolic Engineering, 2014, 22: 22-31.
[14] MOON T S, DUEBER J E, SHIUE E, et al. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli[J]. Metabolic Engineering, 2010, 12(3): 298-305.
[15] 和娴娴. 葡萄糖醛酸产生菌的筛选及培养条件研究[D]. 石家庄:河北科技大学, 2012.
[16] PETROVIE S E, MALBASA R V, VERAC R M. Biosynthesis of glucuronic acid by means of tea fungus[J]. Molecular Nutrition and Food Research, 2010, 44(2): 138-139.
[17] BLANC P J. Characterization of the tea fungus metabolites[J]. Biotechnology Letters, 1996, 18(2): 139-142.
[18] NGUYEN N K, DONG N T N, NGUYEN H T, et al. Lactic acid bacteria: promising supplements for enhancing the biological activities of Kombucha[J]. Springerplus, 2015, 4(1): 91.
[19] BEIGMOHAMMADI F, KARBASI A, BEIGMOHAMMADI Z. Production of high glucuronic acid level in Kombucha beverage under the influence environmental condition[J]. Journal of Food Technology and Nutrition, 2010, 2(26):30-38.
[20] YANG Z, FENG Z, JI B, et al. Symbiosis between microorganisms from Kombucha and Kefir: Potential significance to the enhancement of Kombucha function[J]. Applied Biochemistry and Biotechnology, 2010, 160(2): 446-455.
[21] NGUYEN N K, DONG N T N, LE P H, et al. Evaluation of the glucuronic acid production and other biological activities of fermented sweeten-black tea by Kombucha layer and the co-culture with different Lactobacillus sp. strains[J]. International Journal of Modern Engineering Research, 2014, 4(1): 12-17.
[22] JAYABALAN R, MARIMUTHU S, SWAMINATHAN K. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation[J]. Food Chemistry, 2007, 102(1): 392-398.
[23] FILIPPIS F D, TROISE A D, VITAGLIONE P, et al. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation[J]. Food Microbiology, 2018, 73: 11-16.
[24] 范艳群,许建中,徐询,等. 离子排斥色谱法同时测定葡萄糖醛酸和内酯及葡萄糖醛酸稳定性[J]. 应用化学, 2014, 31(4): 450-454.
[25] 国家食品药品监督管理总局. GB 5009.5—2016, 食品中蛋白质的测定[S]. 北京:中国标准出版社,2016.
[26] 宋江. 酱油酿造用鲁氏接合酵母菌的生长及其产香气成分研究[D]. 长沙:湖南农业大学, 2013.
Outlines

/