This study aimed to improve the extraction efficiency of Moringa oleifera seed oil and reveal the mechanisms for different pretreatment methods. The Moringa oleifera powder was pretreated by microwave, high pressure, and ultrasound, respectively, followed by aqueous enzymatic extraction. The structures of Moringa oleifera powder with and without pretreatments were examined by scanning electron microscopy. The results showed that compared with traditional aqueous enzymatic extraction method, microwave, high pressure, and ultrasonic pretreatments increased the oil extraction rate by 5.64%, 9.03%, and 9.90%, respectively. Moreover, it was found that all these three pretreatments could severely damage the structure of Moringa oleifera seeds to different degrees. In particular, ultrasonic treatment led to smaller fragments and obvious holes in Moringa oleifera seed particles, while high pressure treatment resulted in homogeneous tablet-structure. In conclusion, high pressure and ultrasound can effectively destroy Moringa oleifera seed cell walls to improve the extraction efficiency of oil, which provides a new idea for extracting oils in food industries.
SUN Yan
,
QIN Xiaoli
,
ZHONG Jinfeng
,
LIU Xiong
. Effects of different pretreatments on extracting Moringa Oleiferaseed oil and relevant mechanisms[J]. Food and Fermentation Industries, 2019
, 45(11)
: 179
-184
.
DOI: 10.13995/j.cnki.11-1802/ts.019592
[1] 许敏, 赵三军,宋晖,等. 辣木的研究进展[J].食品科学,2016,37(23):291-301.
[2] UPADHYAY P, YADAV M K, MISHRA S, et al. Moringa oleifera: A review of the medical evidence for its nutritional and pharmacological properties[J].International Journal of Research in Pharmacy and Science,2015,5(2):12-16.
[3] TSAKNIS J, LALAS S, GERGIS V, et al. Characterization of Moringa oleifera variety Mbololo seed oil of Kenya[J].Journal of Agricultural and Food Chemistry,1999,47(11):4 495-4 499.
[4] SALAHELDEEN M, AROUA M K, MARIOD A A, et al. An evaluation of Moringa peregrina seeds as a source for bio-fuel [J].Industrial Crops and Products,2014,61:49-61.
[5] 段琼芬, 刘飞,罗金岳,等. 辣木籽油的超临界CO2萃取及其化学成分分析[J].中国油脂,2010(2):76-79.
[6] 虎虓真, 陶宁萍,许长华. 基于食药价值的辣木籽研究进展[J].食品科学,2018,39(15):302-309.
[7] BHUTADA P R, JADHAY A J B, PINJARI D V, et al. Solvent assisted extraction of oil from Moringa oleifera Lam. seeds[J]. Industrial Crops and Products,2016,82:74-80.
[8] 刘华勇. 水酶法同时提取辣木籽油和抗氧化肽的研究[D].广州:华南理工大学,2016.
[9] ANWAR F, LATIF S. Quality assessment of Moringa concanensis seed oil extracted through solvent and aqueous-enzymatic techniques[J].Grasas Y Aceites,2008,59(1):69-75.
[10] YUSOFF M M, NIRANJAN K, GORDON M H, et al. High pressure pre-treatment of Moringa oleifera seed kernels prior to aqueous enzymatic oil extraction[J].Innovative Food Science and Emerging Technologies,2017,39:129-136.
[11] 陈德经. 微波预处理水酶法提取茶叶籽油工艺优化[J].食品科学,2012,33(6):87-91.
[12] LIU S, JIANG L Z, LI Y. Research of aqueous enzymatic extraction of watermelon seed oil of ultrasonic pretreatment assisted[J]. Procedia Engineering,2011,15(1):4 949-4 955.
[13] 原姣姣, 王成章,张红玉,等. 超声辅助酶法提取橄榄油的研究[J].中国油脂,2016,41(7):10-14.
[14] JIAO J, LI Z G, GAI Q Y, et al. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities[J].Food Chemistry,2014,147(6):17-24.
[15] 仵缘, 蒋丹,包瑛,等. 微波辅助溶剂法提取橡胶籽油工艺[J].食品与发酵工业,2015,41(7):244-250.
[16] 胡滨, 陈一资,苏赵. 超声波和微波辅助水酶法提取葡萄籽油的工艺研究[J].中国油脂,2015,40(12):12-17.
[17] VINATORU M, CHEMAT F, MASON T J. The extraction of natural products using ultrasound or microwaves[J].Current Organic Chemistry,2011,15(2):237-247.
[18] 杨慧萍, 宋伟,王素雅,等. 高压蒸煮、超声波辅助水酶法处理米糠技术研究[J].粮食与饲料工业,2005,12:20-21.
[19] JUNG S, MAHFUZA A. Low temperature dry extrusion and high-pressure processing prior to enzyme-assisted aqueous extraction of full fat soybean flakes[J].Food Chemistry,2009,114(3):947-954.
[20] ATHANASIOS C, NIKOLAS G S, DIMITRA J D, et al. Comparison of distillation and ultrasound-assisted extraction methods for the isolation of sensitive aroma compounds from garlic (Allium sativum)[J].Ultrasonics Sonochemistry,2006,13(1):54-60.
[21] PINGRET D, FABIANO-TIXIER A S, CHEMAT F. Degradation during application of ultrasound in food processing: A review[J].Food Control,2013,31(2):593-606.
[22] 洪晴悦, 张玉. 超声波辅助提取牡丹籽毛油的工艺优化及脂肪酸组成分析[J].食品与发酵工业,2018,44(3): 159-164.
[23] SHARMA A, GUPTA M N. Ultrasonic pre-irradiation effect upon aqueous enzymatic oil extraction from almond and apricot seeds[J].Ultrasonics Sonochemistry,2006,13(6):529-534.
[24] TOMA M, VINATORU M, PANIWNYK L, et al. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction[J].Ultrasonics Sonochemistry,2001,8(2):137-142.
[25] ABDULKARIM S M, LONG K, LAI O M, et al. Some physico-chemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods[J].Food Chemistry,2005,93(2):253-263.