Culture medium optimization for Oenococcus oeni producing extracellular polymeric substances and their cryoprotective ability

  • WANG Jifeng ,
  • SHI Kan ,
  • AN Wei ,
  • YU Dongliang ,
  • LIU Shuwen ,
  • HE Ling
Expand
  • 1College of Enology, Northwest A&F University, Yangling 712100, China
    2Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China
    3Heyang Experimental and Demonstrational Stations for Grape, Weinan 715300, China
    4Chateau Kings International Co., Ltd. Qinhuangdao, Changli 066600, China
    5College of Horticulture, Northwest A&F University, Yangling 712100, China

Online published: 2019-09-03

Abstract

This study aimed to optimize the culture medium for producing extracellular polymeric substances (EPS) by Oenococcus oeni and evaluate the cryoprotective ability of EPS by scanning electron microscope (SEM), transmission electron microscope (TEM) and the survival rate analysis of O. oeni after freeze-drying. It was found that 119.7 mg/100 mL EPS was produced under the optimized condition: an initial pH of 4.8 with 20 g/L peptone and 15 g/L glucose. The survival rate of bacteria after freeze-drying was 70.97% when EPS was used as a cryoprotectant, which was higher than those of other conventional cryoprotectants. Besides, EPS had obvious protective effects on freeze-dried bacteria, as the morphology of cells in experimental groups with cryoprotectants were more complete. This study prelimin.arily explored the mechanisms of EPS regarding protecting freeze-dried O. oeni, which provides a theoretical basis for applying EPS in developing freeze-drying protectants.

Cite this article

WANG Jifeng , SHI Kan , AN Wei , YU Dongliang , LIU Shuwen , HE Ling . Culture medium optimization for Oenococcus oeni producing extracellular polymeric substances and their cryoprotective ability[J]. Food and Fermentation Industries, 2019 , 45(15) : 157 -163 . DOI: 10.13995/j.cnki.11-1802/ts.020591

References

[1] 彭传涛, 贾春雨,文彦,等.苹果酸-乳酸发酵对干红葡萄酒感官质量的影响[J]. 中国食品学报, 2014,14(2): 261-268.
[2] 王玲, 卜潇,陈其玲,等,酒酒球菌β-葡萄糖苷酶产酶条件优化及酶学性质研究[J]. 西北农林科技大学学报(自然科学版), 2017,45(5): 130-138.
[3] 任晓宁, 张宇,陈其玲,等.不同发酵条件对模拟葡萄酒中酒酒球菌柠檬酸代谢的影响[J]. 食品工业科技, 2017,38(4): 180-185;190.
[4] LA H D V, BRAVO-FERRADA B M, DELFEDERICO L, et al. Prevalence of Lactobacillus plantarum and Oenococcus oeni during spontaneous malolactic fermentation in Patagonian red wines revealed by polymerase chain reaction-denaturing gradient gel electrophoresis with two targeted genes[J]. Australian Journal of Grape and Wine Research, 2015,21(1): 49-56.
[5] SURIANO S, SAVINO M, BASILE T, et al. Management of malolactic fermentation and influence on chemical composition of Aglianico red wines[J]. Italian Journal of Food Science, 2015, 27(3): 310-319.
[6] BERBEGAL C, BENAVENT-GIL Y, NAVASCUES E, et al. Lowering histamine formation in a red ribera del duero wine (Spain) by using an indigenous O.oeni strain as a malolactic starter[J]. International Journal of Food Microbiology, 2017, 244: 11-18.
[7] 李莹莹, 苏静,杨世玲,等.直投式酒酒球菌SD-2a发酵剂对葡萄酒品质的影响[J]. 西北农林科技大学学报(自然科学版), 2016,44(12): 192-200.
[8] CARVALHO A S, SILVA J, HO P, et al. Relevant factors for the preparation of freeze-dried lactic acid bacteria[J]. International Dairy Journal, 2004,14(10): 835-847.
[9] BRAVO-FERRADA B M, GONCALVES S, SEMORILE L, et al. Cell surface damage and morphological changes in Oenococcus oeni after freeze-drying and incubation in synthetic wine[J]. Cryobiology, 2018,82: 15-21.
[10] 陈俊亮, 张慧芸,田芬,等. 乳酸乳球菌乳脂亚种冷冻干燥保护剂优化及其贮藏稳定性[J]. 食品科学, 2014, 35(11): 109-114.
[11] MARX J G, CARPENTER S D, DEMING J W. Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions[J]. Can J Microbiol, 2009,55(1): 63-72.
[12] 李江, 何培青,陈靠山,等. 南极适冷菌Pseudoaltermonas sp. S-15-13胞外多糖低温保护作用的研究[J]. 海洋科学进展, 2007(2): 215-219.
[13] SELBMANN L, ONOFRI S, FENICE M, et al. Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080[J]. Research in Microbiology, 2002, 153(9): 585-592.
[14] WU Z, KAN F W, SHE Y M, et al. Biofilm, ice recrystallization inhibition and freeze-thaw protection in an epiphyte community[J]. Applied Biochemistry and Microbiology, 2012,48(48):363-370.
[15] JIANG J, SUMBY K M, SUNDSTROM J F, et al. Directed evolution of Oenococcus oeni strains for more efficient malolactic fermentation in a multi-stressor wine environment[J]. Food Microbiol, 2018, 73: 150-159.
[16] BASTARD A, COELHO C, BRIANDET R, et al. Effect of biofilm formation by Oenococcus oeni on malolactic fermentation and the release of aromatic compounds in wine[J]. Front Microbiol, 2016,7: 613.
[17] ZHAO G Q, ZHANG G. Influence of freeze-drying conditions on survival of Oenococcus oeni for malolactic fermentation[J]. International Journal of Food Microbiology, 2009, 135(1): 64-67.
[18] DIMOPOULOU M, RAFFENNE J, CLAISSE O, et al. Oenococcus oeni exopolysaccharide biosynthesis, a tool to improve malolactic starter performance[J]. Front Microbiol, 2018,9: 1 276.
[19] 张娟, 刘丽,高侃,等. 鼠李糖乳酸杆菌Lactobacillus rhamnosus GG胞外多糖合成与提取优化研究[J]. 饲料工业, 2014,35(13): 30-34.
[20] CARUSO C, RIZZO C, MANGANO S, et al. Production and biotechnological potential of extracellular polymeric substances from sponge-associated Antarctic bacteria[J]. Appl Environ Microbiol, 2018, 84(4).
[21] 刘丽波, 李春,孟祥晨. 1株高产EPS嗜热链球菌的筛选及培养条件优化[J]. 中国食品学报, 2007,8(3): 64-68.
[22] 张立冬, 党芳芳,赵思雨,等. 影响乳酸菌生物膜形成的因素[J]. 中国乳品工业, 2016, 44(10):4-6.
[23] 杨世玲, 陈其玲,李莹莹,等. 酒酒球菌磷酸-β-葡萄糖苷酶基因的克隆及生物信息学分析[J]. 中国食品学报, 2017,17(2): 197-205.
[24] DIMOPOULOU M, BARDEAU T, RAMONET P Y, et al. Exopolysaccharides produced by Oenococcus oeni: From genomic and phenotypic analysis to technological valorization[J]. Food Microbiology, 2016, 53: 10-17.
[25] 张国强. 酒酒球菌胁迫诱导抗冷冻干燥机制研究[D]. 杨凌:西北农林科技大学, 2013.
[26] 王英, 周剑忠,黄开红,等. 益生菌干酪乳杆菌FM10-3产胞外多糖培养条件的优化[J]. 中国乳品工业, 2014. 42(2): 9-12; 17.
[27] YANG Z, LI S, ZHANG X, et al. Capsular and slime-polysaccharide production by Lactobacillus rhamnosus JAAS8 isolated from Chinese sauerkraut: Potential application in fermented milk products[J]. J Biosci Bioeng, 2010, 110(1): 53-57.
[28] KANMANI P, SATISH K R, YUVARAJ N, et al. Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro[J]. Bioresour Technol, 2011, 102(7): 4 827-4 833.
[29] ZAJSEK K, GORSEK A, KOLAR M. Cultivating conditions effects on kefiran production by the mixed culture of lactic acid bacteria imbedded within kefir grains[J]. Food Chem, 2013, 139(1-4): 970-977.
[30] 于静, 曾小群,王鸿飞,等. 高产胞外多糖乳酸菌的筛选及其发酵条件优化[J]. 中国食品学报, 2015, 15(2): 93-98.
[31] ROZALI S N M, MILANI E A, DEED R C, et al. Bacteria, mould and yeast spore inactivation studies by scanning electron microscope observations[J]. Int J Food Microbiol, 2017, 263: 17-25.
[32] MOSER T H, SHOKUHFAR T, EVANS J E. Considerations for imaging thick, low contrast, and beam sensitive samples with liquid cell transmission electron microscopy[J]. Micron, 2018, 117: 8-15.
[33] WANG Y, LIU S, SU J, et al. Three novel structural phenomena in the cellular ontogeny of Oenococcus oeni from northern China[J]. Sci Rep, 2017, 7(1): 11 265.
[34] YANG K, LIU M, WANG J, et al. Surface characteristics and proteomic analysis insights on the response of Oenococcus oeni SD-2a to freeze-drying stress[J]. Food Chem, 2018, 264: 377-385.
[35] 王云. 酒酒球菌细胞个体发育过程中三种新的结构现象研究[D]. 杨凌:西北农林科技大学, 2018.
[36] 潘泽锴. 基于蔗糖结晶过程的数学建模与仿真[J]. 齐齐哈尔大学学报(自然科学版), 2018, 34(4): 65-69.
Outlines

/