Formation and degradation analysis of main biogenic amines in Sichuanindustrial pickled cowpea

  • TANG Xiaoman ,
  • TANG Yao ,
  • ZHANG Qisheng ,
  • WANG Dongdong ,
  • CHEN Gong ,
  • LI Heng ,
  • MING Jianying ,
  • YU Wenhua ,
  • LIU Qingbin
Expand
  • 1 (Sichuan University of Science & Engineering, Zigong 643000,China)
    2 (Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute, Meishan 620000,China)
    3 (Sichuan Academy of Food and Fermentation Industries,Chendu 643000,China)

Received date: 2019-07-10

  Online published: 2019-11-15

Abstract

This study aimed to explore the relationship between the metabolic pathway of major biogenic amines in Sichuan industrial pickled cowpea and microorganisms and enzymes. The content of biogenic amines and amino acids in Sichuan industrial pickled cowpea was determined, and the metagenomics were sequenced on the Illumina HiSeq 4000 platform and annotated on the NR and KEGG databases. The results showed that the main biogenic amines in the sample were cadaverine, putrescine, histamine and tyramine. The relative abundance (>0.5%) of microbial species was mainly related to the formation and degradation of putrescine, cadaverine and tyramine. The species of bioamine formation and degradation capacity were as high as 51.05%, mainly lactic acid bacteria, yeast and spores. Microorganisms such as Sugiyamaella lignohabitans and Geotrichum candidum contained enzymes both for the formation and degradation of putrescine, and can participate in different metabolic pathways for the formation and degradation of different biogenic amines. This research comprehensively expounds the relationship between the formation and degradation of four major biogenic amines and the microbes and enzymes in the pickled cowpea system, which can lay foundation for the practical application of kimchi industry to provide data supporting and control of biogenic amines.

Cite this article

TANG Xiaoman , TANG Yao , ZHANG Qisheng , WANG Dongdong , CHEN Gong , LI Heng , MING Jianying , YU Wenhua , LIU Qingbin . Formation and degradation analysis of main biogenic amines in Sichuanindustrial pickled cowpea[J]. Food and Fermentation Industries, 2019 , 45(21) : 86 -92 . DOI: 10.13995/j.cnki.11-1802/ts.021627

References

[1] 张林,罗陶,张华,等.四川泡菜分类归属及定义的分析与建议[J].食品安全质量检测学报,2019,10(5):1 250-1 253.
[2] 向文良, 车振明,陈功. 四川泡菜加工原理与技术[M]. 北京:中国轻工业出版社, 2015.
[3] YUSUF A,ZEYNAL T, METIN D. Biogenic amine and fermentation metabolite production assessments of Lactobacillus plantarum isolates for naturally fermented pickles[J]. LWT-Food Science and Technology, Elsevier Ltd, 2018,98: 322-328.
[4] 李安林, 熊双丽. 豇豆籽蛋白的氨基酸含量与营养价值评价[J]. 食品研究与开发, 2008, 29(6):147-150.
[5] SHRUTI SHUKLA,JONG SUK LEE,VIVEK K,et al. Toxicological evaluation of lotus, ginkgo, and garlic tailored fermented Korean soybean paste (Doenjang) for biogenic amines, aflatoxins, and microbial hazards[J]. Food and Chemical Toxicology,2019,133:110 729.
[6] 管世敏. 降解亚硝酸盐乳酸菌的分离筛选及其在泡菜发酵中的应用研究[D]. 上海:上海师范大学, 2009.
[7] 王光强, 俞剑燊,胡健, 等. 食品中生物胺的研究进展[J]. 食品科学, 2016, 37(1):269-278.
[8] JEON A R, LEE J H, MAH J H. Biogenic amine formation and bacterial contribution in, Cheonggukjang, a Korean traditional fermented soybean food[J]. LWT, 2018,92:282-289.
[9] J. FRÍAS, C. MARTÍNEZ-VILLALUENGA, GΜLEWICZ P, et al. Biogenic amines and HL60 citotoxicity of alfalfa and fenugreek sprouts[J]. Food Chemistry, 2007, 105(3):959-967.
[10] 胡建鸿,邱利焱,王成润,等.柱前衍生反相高效液相色谱法同时测定氨基酸保健饮品中16种氨基酸的含量[J]. 食品科技,2008,29(10):211-214.
[11] LI D, LIU C M, LUO R, et al. MEGAHIT: anultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10): 1 674-1 676.
[12] NOGUCHI H, PARK J, TAKAGI T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences[J]. Nucleic Acids Research, 2006, 34(19): 5 623-5 630.
[13] FU L, NIU B, ZHU Z, et al. CD-HIT: accelerated for clustering the next-generation sequencing data[J]. Bioinformatics, 2012, 28(23): 3 150-3 152.
[14] LI R, LI Y, KRISTIANSEN K, et al. SOAP: short oligonucleotide alignment program[J]. Bioinformatics, 2008, 24(5):713-714.
[15] XIE C, MAO X, HUANG J, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Research, 2011, 39(suppl 2): W316-W322.
[16] HSIEN-FENG KUNG, YIING-HORNG LEE, DER-FENG TENG. Histamine formation by histamine-forming bacteria and yeast in mustard pickle products in Taiwan[J]. Food Chemistry, 2006,99(3): 579-585.
[17] 霍晓慧,宫瑞泽,王燕华,等.UPLC法测定桔梗泡菜中的生物胺类成分[J].食品科技,2018,43(9):325-329.
[18] LIU L, DU P, ZHANG G, et al. Residual nitrite and biogenic amines of traditional northeast sauerkraut in China[J]. International Journal of Food Properties, Taylor & Francis, 2017, 20(11): 2 448-2 455.
[19] KIM H J, RDA, SUWON, Republic of Korea. investigation on biogenic amines in plant- based minor Korean fermentated foods[J]. Journal of Applied Biological Chemistry, 2013, 56(2):113-117.
[20] 瞿凤梅,丁晓雯,王瑜. 市售泡菜中生物胺含量的比较分析[J]. 食品工业科技, 2014, 35(21): 316-319;323.
[21] 田丰伟, 孟甜,丁俊荣,等. 蔬菜发酵剂乳酸菌产生物胺的检测与评价[J]. 食品科学, 2010, 31(24):241-245.
[22] DEL R B, MARCOBAL A, CARRASCOSA A V, et al. PCR detection of foodborne bacteria producing the biogenic amines histamine, tyramine, putrescine, and cadaverine.[J]. Journal of Food Protection, 2006, 69(10):2 509-2 514.
[23] LUCAS P L A. Purification and partial gene sequence of the tyrosine decarboxylase of Lactobacillus brevis IOEB 9809[J]. FEMS Microbiology Letters, 2002, 211(1): 85-89.
[24] 谷静思. 传统发酵臭豆腐中微生物菌相结构解析及其与生物胺形成的关系[D].杭州:浙江大学,2018.
[25] 张吉明, 赵燕梅,许庆方. 产生物胺乳酸菌研究概述[J]. 山西农业科学, 2014, 42(5):521-525.
[26] 王长远, 王云光,于长青, 等. 产生物胺乳酸菌的检测及产生物胺量的测定[J]. 农产品加工(学刊), 2010(1):22-25.
[27] 李彬彬,徐晔,牛淑慧,等.食品中生物胺含量及生物胺氧化酶的研究进展[J]. 食品科学,2019,40(1):341-347.
[28] 燕慧. 发酵食品中的生物胺问题及其控制措施探讨[J]. 中国调味品, 2014, 39(7): 130-132.
[29] SANTOS-BUELGA C, PEÑA-EGIDO M J R J C. Changes in tyramine during chorizo-sausage ripening[J]. Journal of Food Science, 2015, 51(2): 518-519.
[30] 王振. HPLC法检测葡萄酒中的生物胺[D]. 青岛:青岛科技大学, 2013.
[31] MARTUSCELLI M, CRUDELE M A, GARDINI F, et al. Biogenic amine formation and oxidation by Staphylococcus xylosus strains from artisanal fermented sausages[J]. Letters in Applied Microbiology, 2010, 31(3):228-232.
[32] LEUSCHNER R G, HEIDEL M, HAMMES W P. Histamine and tyramine degradation by food fermenting microorganisms[J]. International Journal of Food Microbiology, 1998, 39(1-2):1-10.
[33] DAPKEVICIUS M L N E, NOUT M J R, ROMBOUTSO F M, et al. Biogenic amine formation and degradation by potential fish silage starter microorganisms[J]. International Journal of Food Microbiology, 2000, 57(1-2):107-114.
[34] 钟凯. 基于NMR的乳酸菌生物胺通路的代谢组学分析及安全性评价中的应用[D]. 北京:中国疾病预防控制中心,2009.
[35] GALE E F. The bacterial amino acid decarboxylases[M]// Advances in Enzymology and Related Areas of Molecular Biology, Volume 6. John Wiley & Sons, Inc. 2006,6:1-32.
[36] MARÍA F, LINARES D M, ANA R, et al. Factors affecting tyramine production in Enterococcus durans, IPLA 655[J]. Applied Microbiology and Biotechnology, 2007, 73(6):1 400-1 406.
[37] 黄瑶,罗爱玲,彭铭烨,等.微生物胺氧化酶研究进展[J].中国酿造,2016,35(9):24-27.
[38] COSANSU S. Determination of biogenic amines in a fermented beverage, boza[J]. Journal of Food, Agriculture and Environment, 2009, 7(2): 54-58.
[39] XIA X L, LUO Y, ZHANG Q W, et al. Mixed starter culture regulate biogenic amines fournation via decarboxylation and transamination during Chinase rice wine fermentation[J]. Journal of Agricultural and Food Chemistry,2018,66(25): 6 348-6 356.
Outlines

/