Analysis of critical site for microbial contamination in apple vinegarbeverage production

  • CHEN Ju ,
  • CHEN Lin ,
  • HU Tao ,
  • ZHANG Xiaofeng ,
  • SONG Jia ,
  • ZHENG Yu ,
  • SHI Lei ,
  • WAN Shoupeng ,
  • WANG Min
Expand
  • 1 (State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism andFermentation Process Control College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China)
    2 (Tianjin Limin Seasoning Co., Ltd., Tianjin 300308, China)

Received date: 2019-07-19

  Online published: 2019-11-15

Abstract

For identifying the critical sites to prevent microbial contamination, the microorganisms composition of apple vinegar beverage production and their characteristic were analyzed. High-throughput sequencing was used to reveal the bacterial composition of the samples. The main microorganisms were separated, and then the characteristics of potentially contaminating bacteria were analyzed. Six genera, including Pediococcus, Gluconacetobacter, Lactobacillus, Paracoccus, Lysobacter and Aquatobacterium were detected in the raw apple vinegar flocculent that can cause the turbidity of apple vinegar beverage and result in the increase of lactic acid concentration by 2.3-fold. According to the production process, 11 critical sites of apple vinegar beverage production were sampled and analyzed. Especially, the heatproof microorganisms were purified and identified. The results showed that the potential contaminating microorganisms for the apple vinegar beverage were mainly consisted of 15 species of bacteria belonging to 7 genera. The connecting pipes between each production section are the critical sites to prevent microbial contamination for apple vinegar beverage. The main sources of potential contamination microorganism were identified according to these results, which will help improving management to ensure the quality and safety of apple vinegar beverage.

Cite this article

CHEN Ju , CHEN Lin , HU Tao , ZHANG Xiaofeng , SONG Jia , ZHENG Yu , SHI Lei , WAN Shoupeng , WANG Min . Analysis of critical site for microbial contamination in apple vinegarbeverage production[J]. Food and Fermentation Industries, 2019 , 45(21) : 195 -200 . DOI: 10.13995/j.cnki.11-1802/ts.021724

References

[1] 王超,林小晖,杜冰.乳酸菌发酵型饮料的研究现状与前景[J].饮料工业,2018(1):68-70.
[2] 李欢.富含乳酸苹果原醋酿造工艺的研究[D].无锡:江南大学,2017.
[3] 向进乐,罗磊,郭香凤,等.果醋功能性研究进展[J].食品科学,2013,34(13):356-360.
[4] KHEZRI S S,SAIDPOUR A,HOSSEINZADEH N,et al. Beneficial effects of apple cider vinegar on weight management,visceral adiposity index and lipid profile in overweight or obese subjects receiving restricted calorie diet:A randomized clinical trial[J].Journal of Functional Foods,2018,43:95-102.
[5] 栗亚男,宋慧,强阿娟,等.响应面法优化山楂复合果醋发酵工艺[J].中国调味品,2015,40(1):57-61.
[6] ZHENG Y,MOU J,NIU J,et al.Succession sequence of lactic acid bacteria driven by environmental factors and substrates throughout the brewing process of Shanxi aged vinegar[J].Applied Microbiology and Biotechnology,2018,102(6):2 645-2 658.
[7] ANDRES B C,SAAD M M, FERRETE E C,et al.Metaproteomics and ultrastructure characterization of Komagataeibacter spp. involved in high-acid spirit vinegar production[J].Food Microbiology,2016,55:112-122.
[8] 欧阳友生,陈仪本,陈娇娣,等.广东食品(饮料)企业车间霉菌污染及优势种群调查[J].中国卫生检验杂志,2001,(4):446-448.
[9] 许晓云,陈倩,刘琦,等.包装饮用水生产线中铜绿假单胞菌的检测与防控[J].饮料工业,2018,21(3):14-18.
[10] 朱忠顺.细菌纤维素的发酵生产及其对重金属离子的吸附作用[D].郑州:河南大学,2017.
[11] 高年发,任雪.HPLC测定独流老醋陈酿过程中有机酸变化[J].中国酿造,2010,29(3):143-147.
[12] 刘磊,陈鹏,赵劲,等.化学生物学基础[M].北京科学出版社,2010.
[13] KASHCHEYEVA E I,GLADYSHEVA E K,SKIBA E A,et al.A study of properties and enzymatic hydrolysis of bacterial cellulose[J].Cellulose,2019,26(4):2 255-2 265.
[14] 杨礼富. 细菌纤维素研究新进展[J]. 微生物学通报, 2003, 30(4):95-98.
[15] 程瑶, 赵千婧,王佳,等. 化合物代谢新途径构建及微生物糖代谢网络改造的研究进展[J]. 北京化工大学学报(自然科学版), 2018, 45(5):82-95.
[16] 马霞,王瑞明,关凤梅,等.发酵生产细菌纤维素菌株的特点[J].四川食品与发酵,2005(1):20-22.
[17] TOLIENG V,PRASIRTSAK B,MIYASHITA M,et al.Sporolactobacillus shoreicorticis sp.nov.a lactic acid-producing bacterium isolated from tree bark[J].International Journal of Systematic and Evolutionary Microbiology,2017,67(7):2 363-2 369.
[18] YE L,ZHOU X,HUDARI M S B,et al.Highly efficient production of l-lactic acid from xylose by newly isolated Bacillus coagulans C106[J].Bioresource Technology,2013,132(132):38-44.
[19] 咸赫,史素娟,毛静静,等.一株细菌纤维素生产菌株Gluconacetobacter xylinus的分离鉴定及其产物分析[J].纤维素科学与技术,2016,24(2):77-84.
[20] 翟磊,苏姣姣,刘洋,等.食醋中污染菌的分离与鉴定[J].生物技术通报,2016,32(3):198-202.
[21] LI S,JOCHUM C C,YU F,et al.An antibiotic complex from Lysobacter enzymogenes strain C3:antimicrobial activity and role in plant disease control[J].Phytopathology,2008,98(6):695-701.
[22] BAHADOU S A,OUIJJA A,KARFACH A,et al.New potential bacterial antagonists for the biocontrol of fire blight disease (Erwinia amylovora) in Morocco[J].Microbial Pathogenesis,2018,117(C):7-15.
[23] LEE K C,KIM K K,KIM J S,et al.Cohnella collisoli sp. nov. isolated from lava forest soil[J].International Journal of Systematic and Evolutionary Microbiology,2015,65(9):3 125-3 130.
[24] 郑志永,姚善泾.应用溶氧反馈控制高密度培养重组大肠杆菌过程中乙酸的产生[J].高校化学工程学报,2006,20(2):233-238.
[25] 孙文丽.胀气食醋中污染微生物的分离鉴定及其生理生化特性[J].食品工业科技,2018,39(17):99-105.
[26] 徐智勇,闫岩,王卫,等.芽孢生成和萌发相关机制[J].中西医结合护理(中英文),2016,2(11):169-172.
[27] ABHYANKAR W R,WEN J,SWARGE B N,et al.Proteomics and microscopy tools for the study of antimicrobial resistance and germination mechanisms of bacterial spores[J].Food Microbiology,2018,81:89-96.
[28] KOTIRANTA A,LOUNATMAA K,HAAPASALO M.Epidemiology and pathogenesis of Bacillus cereus infections[J].Microbes and Infection,2000,2(2):189-198.
[29] 张翼.婴幼儿食品中呕吐型蜡样芽孢杆菌的鉴别与多位点序列分析[D].武汉:武汉轻工大学,2015.
[30] 郭天文,叶红.解决酱油货架期涨袋、爆瓶的探讨[J].中国酿造,2010(3):138-140.
Outlines

/