Research and development of prevention and control technology of bioamine and its detection technology in tuna

  • DENG Jianchao ,
  • LI Shaoli ,
  • YANG Xianqing ,
  • CHEN Shengjun ,
  • WU Yanyan ,
  • LI Chunsheng ,
  • MA Haixia ,
  • RONG Hui
Expand
  • 1 (Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs; South China Sea Fisheries ResearchInstitute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China)
    2 (College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China)

Received date: 2019-07-10

  Online published: 2020-02-10

Abstract

Tuna is known as Ocean Gold and is increasingly popular among consumers because of its delicious meat and rich nutrition. It is mostly consumed as sashimi in China currently, so the quality of fish as well as its hygiene and safety have become a major concern for consumers. Biogenic amine is a factor that has a significant impact on the safety of fish. This paper reviews the latest research on the prevention and control technology of biogenic amines at home and abroad, introduces the prevention and control technologies with more applications and better prospects. Furthermore, the emphasis is towards current researches on bioamine detection technology adopted in seafood such as tuna. Taking consideration of the current market demand, some specific prospects have been opened up for the future development of bioamine prevention and control technology and biogenic amine detection technology.

Cite this article

DENG Jianchao , LI Shaoli , YANG Xianqing , CHEN Shengjun , WU Yanyan , LI Chunsheng , MA Haixia , RONG Hui . Research and development of prevention and control technology of bioamine and its detection technology in tuna[J]. Food and Fermentation Industries, 2019 , 45(24) : 262 -268 . DOI: 10.13995/j.cnki.11-1802/ts.021623

References

[1] 苗振清,黄锡昌.世界金枪鱼渔业现状分析[J].浙江海洋学院学报, 2002, 21 (4):307-310.
[2] 邹盈,李彦坡,戴志远,等.三种金枪鱼营养成分分析与评价[J].农产品加工,2018(5):43-47.
[3] 张俊,邱永松,陈作志,等.南海外海大洋性渔业资源调查评估进展[J].南方水产科学,2018,14(6):120-129.
[4] 苏红,李雨欣,钱雪丽,等.鳙鱼、金枪鱼和三文鱼鱼头的营养分析与品质评价[J].食品工业科技:2019,40(17):212-217;224.
[5] 缪圣赐,国际渔业动态[J].渔业信息与战略,2016,33(3):156-157.
[6] BIJI K B,RAVISHANKAR C N,VENKATESWARLU R,et al. Biogenic amines in seafood: A review[J]. Journal of Food Science and Technology,2016,53(5): 2 210-2 218.
[7] SANTOS M H S. Biogenic amines: Their importance in foods[J]. International Journal of Food Microbiology, 1996, 29(2-3):213-231.
[8] 李志军,吴永宁,薛长湖.生物胺与食品安全[J].食品与发酵工业, 2004, 30(10):84-91.
[9] VIDAL-CAROU M C, IZQUIERDO-PULIDO M L, MARTÍN-MORRO M C, et al. Histamine and tyramine in meat products: Relationship with meat spoilage[J]. Food Chemistry, 1990, 37(4):239-249.
[10] 景智波,田建军,杨明阳,等.食品中与生物胺形成相关的微生物菌群及其控制技术研究进展[J].食品科学,2018,39(15):262-268.
[11] SHALABY A R. Significance of biogenic amines to food safety and human health[J]. Food Research International, 1996, 29(7):675-690.
[12] 韩笑.贮藏过程中阿根廷鱿鱼生物的变化规律及控制[D].锦州:渤海大学,2019.
[13] BROADLEY K J. The vascular effects of trace amines and amphetamines[J]. Pharmacol Ther, 2010, 125(3):363-375.
[14] FALUS A, GILICZE A. Tumor formation and antitumor immunity; the overlooked significance of histamine[J]. Journal of Leukocyte Biology, 2014, 96(2):225-231.
[15] HERNÁNDEZ-ORTE P, LAPEÑA A C, PEÑA-GALLEGO A, et al. Biogenic amine determination in wine fermented in oak barrels: Factors affecting formation[J]. Food Research International, 2008, 41(7):697-706.
[16] 汤元睿,谢晶.金枪鱼气调保鲜技术的研究进展[J].食品科学, 2014, 35(9):296-300.
[17] BU T, JIN Y, LI X, et al. Effect of electron irradiation and bayberry polyphenols on the quality change of yellowfin tuna fillets during refrigerated storage[J]. Radiation Physics & Chemistry, 2017, 138:67-71.
[18] UCAK I, GOKOGLU N, KIESSLING M, et al. Inhibitory effects of high pressure treatment on microbial growth and biogenic amine formation in marinated herring (Clupea harengus) inoculated with Morganella psychrotolerans[J]. LWT-Food Science and Technology, 2019, 99:50-56.
[19] APONTE M, ANASTASIO A, MARRONE R, et al. Impact of gaseous ozone coupled to passive refrigeration system to maximize shelf-life and quality of four different fresh fish products[J]. LWT-Food Science and Technology, 2018,93:412-419.
[20] 李苗苗,王江峰,徐大伦,等.4种保鲜处理对冰温贮藏金枪鱼片生物胺的影响[J].中国食品学报,2015,15(2):111-119.
[21] 雷志方,谢晶,尹乐,等.温度和姜精油对金枪鱼品质影响及生物胺相关性[J].食品科学, 2017, 38(3):45-52.
[22] 赵庆志,邓建朝,杨贤庆,等.不同贮藏温度下鲐鱼生物胺变化的研究[J].食品工业科技,2018,39(4):260-267;279.
[23] CARBONE M, DONIA D T, SABBATELLA G, et al. Silver nanoparticles in polymeric matrices for fresh food packaging[J]. Journal of King Saud University-Science, 2016,28(4):273-279.
[24] 闵娟.马鲛鱼的生物胺控制与保鲜方法研究[D].厦门:集美大学,2018.
[25] THIANSILAKUL Y, BENJAKUL S, RICHARDS M P. Effect of phenolic compounds in combination with modified atmospheric packaging on inhibition of quality losses of refrigerated Eastern little tuna slices[J]. LWT-Food Science and Technology, 2013, 50(1):146-152.
[26] 肖蕾,蓝蔚青,孙晓红,等. 金枪鱼常用保鲜方式及品质检测技术研究进展[J]. 包装工程, 2017, 38(5):115-120.
[27] WU T, WU C, FANG Z, et al. Effect of chitosan microcapsules loaded with nisin on the preservation of small yellow croaker[J]. Food Control, 2017, 79:317-324.
[28] SCHELEGUEDA, L I, VALLEJO M, GLIEMMO M F, et al. Synergistic antimicrobial action and potential application for fish preservation of a bacteriocin produced by Enterococcus mundtii isolated from Odontesthes platensis[J]. LWT-Food Science and Technology, 2015, 64(2):794-801.
[29] 李双双.金枪鱼的生物保鲜技术研究[D].舟山:浙江海洋,2013.
[30] BAO H N D, USHIO H, OHSHIMA T. Antioxidative activities of mushroom (Flammulina velutipes) extract added to bigeye tuna meat: dose-dependent efficacy and comparison with other biological antioxidants[J]. Journal of Food Science, 2010, 74(2):C162-C169.
[31] TAKAHASHI H, KURAMOTO S, MIYA S, et al. Use of commercially available antimicrobial compounds for prevention of Listeria monocytogenes growth in ready-to-eat minced tuna and salmon roe during shelf life[J]. Journal of Food Protection, 2011, 74(6):994-998.
[32] WANG Q F, HOU Y H, YAN P S. Effect of Cold-Active Protease Treatments on Bigeye Tuna (Thunnus obesus) Meat during Chilled Storage[M].Berlin:Springer, 2012:895-902.
[33] 田鑫,刘红,李传勇,等.反相高效液相色谱法同时检测海产品中8种生物胺[J].食品安全质量检测学报,2017,8(4):1 171-1 178.
[34] 程卫,王艳伟,陈培云,等.HPLC测定虾皮中不同类型的生物胺[J].食品工业, 2016,37(2):293-296.
[35] HERRERO A, SANLLORENTE S, REGUERA C, et al. A new multiresponse optimization approach in combination with a D-Optimal experimental design for the determination of biogenic amines in fish by HPLC-FLD[J]. Analytica Chimica Acta, 2016, 945:31-38.
[36] 张殿伟,高月宇,王金菊,等.发酵肉制品中生物胺的高效液相色谱分析法[J].食品与发酵工业,2019,45(9):256-261.
[37] 王春利,赵晓娟,王英姿.白酒中8种生物胺的高效液相色谱分析法[J].酿酒科技,2017(11):113-116.
[38] 叶磊海,裘均陶,钟世欢,等.基于PriME净化的液相色谱-串联质谱法分析水产品中9种生物胺[J].食品工业科技,2019,40(9):253-257;263.
[39] MOLOGNONI L, DAGUER H, PLONCIO L A, et al. A multi-purpose tool for food inspection: Simultaneous determination of various classes of preservatives and biogenic amines in meat and fish products by LC-MS[J]. Talanta, 2018,178:1 053-1 066.
[40] 孙亚军,廖建萌,雷晓凌,等.液相色谱-串联质谱法同时测定虾仁中八种生物胺[J].食品工业,2015,36(3):273-277.
[41] 赵玲玲,杜冰,曹炜,等.超高效液相色谱-串联质谱法同时测定蜂蜜中8种生物胺[J].食品工业科技,2018,39(4):228-234.
[42] 魏泉增,汤雅,李伟民.液相色谱-串联质谱测定食醋中生物胺含量[J].中国酿造,2019,38(4):170-173.
[43] 彭祺,边威,王芳,等.液质联用法测定黄酒中生物胺含量[J].酿酒科技,2014(2):79-82.
[44] 蒋林蓉,徐志伟,黄杰英,等.基于QuEChERS净化的液相色谱-串联质谱法分析食品中的6种生物胺[J].中国调味品,2017,42(8):127-132.
[45] JASTRZE,NSKA A, PIASTA A, SZYK E. Application of ion chromatography for the determination of biogenic amines in food samples[J]. Journal of Analytical Chemistry, 2015, 70(9):1 131-1 138.
[46] 孙永,刘楠,李智慧,等.抑制性电导检测-离子色谱法快速测定水产品中的生物胺[J].食品安全质量检测学报,2015(10):3 992-3 997.
[47] 周勇,王萍亚,赵华,等.离子色谱法测定冷冻海产品中的生物胺[J].食品工业,2014,35(5):238-241.
[48] 何梨梨.对三类不同化学结构生物胺同时分离检测的CE方法研究[D].上海:东华大学,2017.
[49] 王冠,唐苑融,葛淑丽,等.毛细管电泳安培检测在线富集分析生物胺研究[J].华东师范大学学报(自然科学版),2016(1):123-133.
[50] 安冬,李玉,姜泽东,等.毛细管电泳-电化学发光联用分离检测水产品中的组胺和亚精胺[J].中国食品学报,2014,14(12):136-142.
[51] VITALI L, VALESE A C, AZEVEDO M S, et al. Development of a fast and selective separation method to determine histamine in tuna fish samples using capillary zone electrophoresis[J]. Talanta, 2013, 106(6):181-185.
[52] 夏前芳,罗丹,李在均.石墨烯基葡萄糖生物传感器的电化学制备及应用[J].化学学报,2012,70(19):2 079-2 084.
[53] NEDELJKO P,TUREL M,LOBNIK A. Hybrid sol-gel based sensor layers for optical determination of biogenic amines[J]. Sensors & Actuators B: Chemical,2017,246:1 066-1 073.
[54] 屠青霞. 固相电化学发光传感检测几种鱼中生物胺研究[D].天津:天津科技大学,2017.
[55] HENAO-ESCOBAR W, DEL lORNO-DE ROMÁN T D, DOMÍNGUEZ-RENEDO O, et al. Dual enzymatic biosensor for simultaneous amperometric determination of histamine and putrescine[J]. Food Chemistry, 2016, 190:818-823.
[56] TAO Z H, SATO M, HAN Y L, et al. A simple and rapid method for histamine analysis in fish and fishery products by TLC determination[J]. Food Control, 2011, 22(8):1 154-1 157.
[57] LI C, JIANG X, HOU X. Dielectric barrier discharge molecular emission spectrometer as gas chromatographic detector for amines[J]. Microchemical Journal, 2015, 119:108-113.
[58] LENG P Q, ZHAO F L, YIN B C, et al. A novel, colorimetric method for biogenic amine detection based on arylalkylamine N-acetyltransferase[J]. Chemical Communications, 2015, 51(41):8 712-8 714.
[59] SHUMILINA E, CIAMPA A, CAPOZZI F, et al. NMR approach for monitoring post-mortem changes in Atlantic salmon fillets stored at 0 and 4 ℃[J]. Food Chemistry, 2015, 184:12-22.
[60] MUSCARELLA, MARILENA, MAGRO S L,CAMRANIELLO M, et al. Survey of histamine levels in fresh fish and fish products collected in;Puglia (Italy) by ELISA and HPLC with fluorimetric detection[J]. Food Control, 2013, 31(1):211-217.
Outlines

/