Microwave drying characteristics and kinetic model of cooked purple sweet potato slice

  • SONG Shujie ,
  • WANG Meng
Expand
  • (College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi′an 710119, China)

Received date: 2019-08-13

  Online published: 2020-03-13

Abstract

Based on the cooked purple sweet potato slices (CPSPS), the effects of microwave power, loading and slice thickness on the drying characteristics, its effective moisture diffusion coefficient (EMDC) of water and color of CPSPS were studied. SPSS software was applied to analyze data and optimize the mathematical model of PSPS drying. The result showed that microwave drying process of PSPSs can be divided into three stages: rising rate drying period, constant drying rate stage and falling rate drying period. Microwave power, loading and slice thickness have a certain influence on the microwave drying characteristics of CPSPS. However, the effect of slice thickness was less significant than microwave power and loading. EMDC increased with the increase of microwave power and slice thickness and the decrease of loading. The maximum EMDC was 1.135 4×10-8 m2/s and the value of Ea was 4.893 8 W/g. Of the six models, the Modified Page model had the highest coefficient of determination R2 (0.999 7), the lowest chi-square χ2 (0.000 5) and root mean square RMSE (0.006 1), and it is the optimum model of the PSPS in microwave drying.

Cite this article

SONG Shujie , WANG Meng . Microwave drying characteristics and kinetic model of cooked purple sweet potato slice[J]. Food and Fermentation Industries, 2020 , 46(2) : 85 -93 . DOI: 10.13995/j.cnki.11-1802/ts.021979

References

[1] HE K, YE X, LI X, et al. Separation of two constituents from purple sweet potato by combination of silica gel column and high-speed counter-current chromatography [J]. Journal of Chromatography B, 2012, 881: 49-54.
[2] TRUONG V D, DEIGHTON N, THOMPSON R T, et al. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweet potatoes by HPLC-DAD/ESI-MS/MS[J]. Journal of Agricultural and Food Chemistry, 2010, 58(1): 404-410.
[3] YANG J, GADI R L. Effects of steaming and dehydration on anthocyanins, antioxidant activity, total phenols and color characteristics of purple-fleshed sweet potatoes (Ipomoea batatas) [J]. American Journal of Food Technology, 2008, 3(4): 224-234.
[4] ZHANG Z F, FAN S H, ZHENG Y L, et al. Purple sweet potato color attenuates oxidative stress and inflammatory response induced by D-galactose in mouse liver[J]. Food and Chemical Toxicology, 2009, 47(2): 496-501.
[5] 米谷, 薛文通, 张惠. 中国甘薯的研究现状与应用前景:中国农业工程学会农产品加工及贮藏工程分会学术年会暨中国中部地区农产品加工产学研研讨会论文集[C].北京:中国农业工程学会, 2007:71-75.
[6] 李菁, 萧夏, 蒲晓璐, 等. 紫薯热风干燥特性及数学模型[J]. 食品科学, 2012, 33(15): 90-94.
[7] WANG S M, YU D J, SONG K B. Quality characteristics of purple sweet potato (Ipomoea batatas) slices dehydrated by the addition of maltodextrin[J]. Horticulture, Environment, and Biotechnology, 2011, 52(4): 435-441.
[8] AHMED M, AKTER M S, LEE J C, et al. Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato[J]. LWT-Food Science and Technology, 2010, 43(9): 1 307-1 312.
[9] 汤富蓉. 紫色甘薯全粉加工关键技术的研究[D]. 成都: 西华大学, 2011.
[10] 李文峰, 肖旭霖, 王玮. 紫薯气体射流冲击干燥效率及干燥模型的建立[J]. 中国农业科学, 2013, 46(2): 356-366.
[11] 袁建, 赵腾, 丁超, 等. 微波处理对稻谷品质及脂肪酶活性的影响[J]. 中国农业科学, 2018, 51(21): 4 131-4 142.
[12] 李辉, 林河通, 袁芳, 等. 荔枝果肉微波真空干燥特性与动力学模型[J]. 农业机械学报, 2012, 43(6): 107-112.
[13] DADALI G, KILIS A D, ÕZBEK B. Microwave drying kinetics of okra [J]. Drying Technology, 2007, 25(5): 917-924.
[14] SOYSAL A, ÕZTEKIN S, EREN Õ. Microwave drying of parsley: Modelling, kinetics, and energy aspects[J]. Biosystems Engineering, 2006, 93(4): 403-413.
[15] 王鹤, 慕松, 吴俊, 等. 基于Weibull分布函数的枸杞微波干燥过程模拟及应用[J]. 现代食品科技, 2018, (1):141-147.
[16] 叶欣, 黄晓兵, 胡洋, 等. 龙眼果肉微波干燥特性及干燥模型研究[J]. 食品科技,2012,37(12):67-71.
[17] DADALl G, APAR D K, ÕZBEK B. Estimation of effective moisture diffusivity of okra for microwave drying[J]. Drying Technology, 2007, 25(9): 1 445-1 450.
[18] SOYSAL A, OZTEKIN S, EREN Õ. Microwave drying of parsley: modelling, kinetics, and energy aspects[J]. Biosystems Engineering, 2006, 93(4): 403-413.
[19] VEGA-MERCADO H, GÓNGORA-NIETO M M, BARBOSA-CÁNOVAS G V. Advances in dehydration of foods[J]. Journal of Food Engineering, 2001, 49(4): 271-289.
[20] 朱德泉, 王继先, 钱良存, 等. 猕猴桃切片微波真空干燥工艺参数的优化[J]. 农业工程学报, 2009(3): 248-252.
[21] GIRI S K, PRASAD S. Optimization of microwave-vacuum drying of button mushrooms using response-surface methodology[J]. Drying technology, 2007, 25(5): 901-911.
[22] FIGIEL A. Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves and slices [J]. Journal of Food Engineering, 2009, 94(1): 98-104.
[23] GB 5009.3—2010,食品中水分的测定[S]. 北京:中国标准出版社, 2010.
[24] FALADE K O, SOLADEMI O J. Modelling of air drying of fresh and blanched sweet potato slices [J]. International Journal of Food Science and Technology, 2010, 45(2): 278-288.
[25] WANG Z F, SUN J H, LIAO X, et al. Mathematical modeling on hot air drying of thin layer apple pomace [J]. Food Research International, 2007, 40(1): 39-46.
[26] WHITE G M, ROSS I J, PONELET C G. Fully exposed drying of popcorn [J]. Transactions of the American Society of Agricultural Engineers, 1981, 24(2): 466-468.
[27] CHKIR I, BALTI M A, AYEDA L, et al. Effects of air drying properties on drying kinetics and stability of cactus/brewer’s grains mixture fermented with lactic acid bacteria [J]. Food and Bioproducts Processing, 2015, 94: 10-19.
[28] BAINI R, LANGRISH T A G. Choosing an appropriate drying model for intermittent and continuous drying of bananas [J]. Journal of Food Engineering, 2007, 79(1): 330-343.
[29] O’CALLAGHAN J R, MENZIES D J, BAILEY P H. Digital simulation of agricultural dryer performance [J]. Journal of Agricultural Engineering Research, 1971, 16(3): 223-244.
[30] WANG Z, SUN J, CHEN F, et al. Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying [J]. Journal of Food Engineering, 2007, 80(2): 536-544.
[31] ERTEKIN C, YALDIZ O. Drying of eggplant and selection of a suitable thin layer drying model [J]. Journal of Food Engineering, 2004, 63(3): 349-359.
[32] 吕为乔, 韩清华, 李树君, 等. 微波干燥姜片模型建立与去水机理分析[J]. 农业机械学报, 2015,46(4): 233-237.
[33] 张乐, 赵守涣, 王赵改, 等. 板栗微波真空干燥特性及干燥工艺研究[J]. 食品与机械, 2018,34(4): 206-210.
[34] 文静, 代建武, 张黎骅. 苹果片微波间歇干燥特性及模型拟合[J]. 食品与发酵工业, 2019, 45(4): 81-88.
Outlines

/